922 resultados para Indoor
Effect of internal partitioning on indoor air quality of rooms with mixing ventilation - basic study
Resumo:
The internal partitioning, which is frequently introduced in open-space planning due to its flexibility, was tested to study its effects on the room air quality as well as ventilation performance. For the study, physical tests using a small model room and numerical modeling using CFD computation were utilized to evaluate different test conditions employing mixing ventilation from the ceiling. The partition parameters, such as its location, height, and the gap underneath, as well as contaminant source location were tested under isothermal conditions. This paper summarizes the results from the study.
Resumo:
Until recently, there has been little investigation concerning the poor indoor air quality (IAQ) in classrooms. Despite the evidence that the educational building systems in many of the UK institutions have significant defects that may degrade IAQ, systematic assessments of IAQ measurements has been rarely undertaken. When undertaking IAQ measurement, there is a difficult task of representing and characterizing the environment parameters. Although technologies exist to measure these parameters, direct measurements especially in a naturally ventilated spaces are often difficult. This paper presents a methodology for developing a method to characterize indoor environment flow parameters as well as the Carbon Dioxide (CO2) concentrations. Thus, CO2 concentration level can be influenced by the differences in the selection of sampling points and heights. However, because this research focuses on natural ventilation in classrooms, air exchange is provided mainly by air infiltration. It is hoped that the methodology developed and evaluated in this research can effectively simplify the process of estimating the parameters for a systematic assessment of IAQ measurements in a naturally ventilated classrooms.
Resumo:
A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.
Resumo:
People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.
Resumo:
A physiological experiment was carried out in a naturally ventilated, non-HVAC indoor environment of a spacious experimental room. More than 300 healthy university students volunteered for this study. The purpose of the study was to investigate the human physiological indicators which could be used to characterise the indoor operative temperature changes in a building and their impact on human thermal comfort based on the different climatic characteristics people would experience in Chongqing, China. The study found that sensory nerve conduction velocity (SCV) could objectively provide a good indicator for assessment of the human response to changes in indoor operative temperatures in a naturally ventilated situation. The results showed that with the changes in the indoor operative temperatures, the changing trend in the nerve conduction velocity was basically the same as that of the skin temperature at the sensory nerve measuring segment (Tskin(scv)). There was good coherent consistency among the factors: indoor operative temperature, SCV and Tskin(scv) in a certain indoor operative temperature range. Through self-adaptation and self-feedback regulation, the human physiological indicators would produce certain adaptive changes to deal with the changes in indoor operative temperature. The findings of this study should provide the baseline data to inform guidelines for the development of thermal environment-related standards that could contribute to efficient use of energy in buildings in China.
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.