877 resultados para Individual-based modeling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En un mundo hiperconectado, dinámico y cargado de incertidumbre como el actual, los métodos y modelos analíticos convencionales están mostrando sus limitaciones. Las organizaciones requieren, por tanto, herramientas útiles que empleen tecnología de información y modelos de simulación computacional como mecanismos para la toma de decisiones y la resolución de problemas. Una de las más recientes, potentes y prometedoras es el modelamiento y la simulación basados en agentes (MSBA). Muchas organizaciones, incluidas empresas consultoras, emplean esta técnica para comprender fenómenos, hacer evaluación de estrategias y resolver problemas de diversa índole. Pese a ello, no existe (hasta donde conocemos) un estado situacional acerca del MSBA y su aplicación a la investigación organizacional. Cabe anotar, además, que por su novedad no es un tema suficientemente difundido y trabajado en Latinoamérica. En consecuencia, este proyecto pretende elaborar un estado situacional sobre el MSBA y su impacto sobre la investigación organizacional.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density–urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and rural areas in order to determine if habitats in urban areas are underutilized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comparative analyses of survival senescence by using life tables have identified generalizations including the observation that mammals senesce faster than similar-sized birds. These generalizations have been challenged because of limitations of life-table approaches and the growing appreciation that senescence is more than an increasing probability of death. Without using life tables, we examine senescence rates in annual individual fitness using 20 individual-based data sets of terrestrial vertebrates with contrasting life histories and body size. We find that senescence is widespread in the wild and equally likely to occur in survival and reproduction. Additionally, mammals senesce faster than birds because they have a faster life history for a given body size. By allowing us to disentangle the effects of two major fitness components our methods allow an assessment of the robustness of the prevalent life-table approach. Focusing on one aspect of life history - survival or recruitment - can provide reliable information on overall senescence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally acknowledged that population-level assessments provide,I better measure of response to toxicants than assessments of individual-level effects. population-level assessments generally require the use of models to integrate potentially complex data about the effects of toxicants on life-history traits, and to provide a relevant measure of ecological impact. Building on excellent earlier reviews we here briefly outline the modelling options in population-level risk assessment. Modelling is used to calculate population endpoints from available data, which is often about Individual life histories, the ways that individuals interact with each other, the environment and other species, and the ways individuals are affected by pesticides. As population endpoints, we recommend the use of population abundance, population growth rate, and the chance of population persistence. We recommend two types of model: simple life-history models distinguishing two life-history stages, juveniles and adults; and spatially-explicit individual-based landscape models. Life-history models are very quick to set up and run, and they provide a great deal or insight. At the other extreme, individual-based landscape models provide the greatest verisimilitude, albeit at the cost of greatly increased complexity. We conclude with a discussion of the cations of the severe problems of parameterising models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition. Methodology/Principal Findings: Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place. Significance: Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glacier fluctuations exclusively due to internal variations in the climate system are simulated using downscaled integrations of the ECHAM4/OPYC coupled general circulation model (GCM). A process-based modeling approach using a mass balance model of intermediate complexity and a dynamic ice flow model considering simple shearing flow and sliding are applied. Multimillennia records of glacier length fluctuations for Nigardsbreen (Norway) and Rhonegletscher (Switzerland) are simulated using autoregressive processes determined by statistically downscaled GCM experiments. Return periods and probabilities of specific glacier length changes using GCM integrations excluding external forcings such as solar irradiation changes, volcanic, or anthropogenic effects are analyzed and compared to historical glacier length records. Preindustrial fluctuations of the glaciers as far as observed or reconstructed, including their advance during the “Little Ice Age,” can be explained by internal variability in the climate system as represented by a GCM. However, fluctuations comparable to the present-day glacier retreat exceed any variation simulated by the GCM control experiments and must be caused by external forcing, with anthropogenic forcing being a likely candidate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four CO2 concentration inversions and the Global Fire Emissions Database (GFED) versions 2.1 and 3 are used to provide benchmarks for climate-driven modeling of the global land-atmosphere CO2 flux and the contribution of wildfire to this flux. The Land surface Processes and exchanges (LPX) model is introduced. LPX is based on the Lund-Potsdam-Jena Spread and Intensity of FIRE (LPJ-SPITFIRE) model with amended fire probability calculations. LPX omits human ignition sources yet simulates many aspects of global fire adequately. It captures the major features of observed geographic pattern in burnt area and its seasonal timing and the unimodal relationship of burnt area to precipitation. It simulates features of geographic variation in the sign of the interannual correlations of burnt area with antecedent dryness and precipitation. It simulates well the interannual variability of the global total land-atmosphere CO2 flux. There are differences among the global burnt area time series from GFED2.1, GFED3 and LPX, but some features are common to all. GFED3 fire CO2 fluxes account for only about 1/3 of the variation in total CO2 flux during 1997–2005. This relationship appears to be dominated by the strong climatic dependence of deforestation fires. The relationship of LPX-modeled fire CO2 fluxes to total CO2 fluxes is weak. Observed and modeled total CO2 fluxes track the El Niño–Southern Oscillation (ENSO) closely; GFED3 burnt area and global fire CO2 flux track the ENSO much less so. The GFED3 fire CO2 flux-ENSO connection is most prominent for the El Niño of 1997–1998, which produced exceptional burning conditions in several regions, especially equatorial Asia. The sign of the observed relationship between ENSO and fire varies regionally, and LPX captures the broad features of this variation. These complexities underscore the need for process-based modeling to assess the consequences of global change for fire and its implications for the carbon cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.