972 resultados para Indian ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Late Quaternary benthic foraminifera of four deep-sea cores off Western Australia (ODP 122-760A, ODP 122-762B, BMR96GC21 and RC9-150) have been examined for evidence of increased surface productivity to explain the anomalously low sea-surface paleotemperatures inferred by planktic foraminifera for the last and penultimate glaciations. The delta13C trends of Cibicidoides wuellerstorfi, and differences between the delta13C trends of planktics (Globigerinoides sacculifer) and benthics (C. wuellerstorfi) in the four cores indicate that during stage 6 bottom waters were significantly depleted in delta13C, and strong delta13C gradients were established in the water column, while during stage 2 and the Last Glacial Maximum, delta13C trends did not differ greatly from that of the Holocene. Two main assemblages of benthic foraminifera were identified by principal component analyses: one dominated by Uvigerina peregrina, another dominated by U. proboscidea. Abundance of these Uvigerinids, and of taxa preferring an infaunal microhabitat, and of Epistominella exigua and Bulimina aculeata indicate that episodes of high influx of particulate organic matter were established in most sites during glacial episodes, and particularly so during stage 6, while evidence for upwelling during the Last Glacial Maximum is less strong. The Penultimate Glaciation upwellings were established within the areas of low sea-surface paleotemperature indicated by planktic foraminifera. During the Last Interglacial Climax, upwelling appears to have been established in an isolated region offshore from a strengthened Leeuwin Current off North West Cape. Last Glacial Maximum delta13C values of C. wuellerstorfi at waterdepths of less than 2000 m show smaller than global mean glacial-interglacial changes suggesting the development of a deep hydrological front. A similar vertical stratification/bathyal front was also established during the Penultimate Glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present volume gives the observed physical and chemical data obtained by R.V. "Meteor" in the Indian Ocean during cruise 1964/65. The tables are based on the computations made by the National Oceanographic Data Center (NODC) in Washington. In addition to the normally communicated data, the tables contain four chemical parameters: alkalinity, ammonia, fluoride, and calcium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are presented for the planktonic foraminifers Dentoglobigerina altispira and Globigerinoides sacculifer (shallow-dwelling species) and Globoquadrina venezuelana (deep-dwelling species) from Miocene sediments at two Ocean Drilling Program sites, located at depths of near 3000 m, in the western (Site 709) and eastern (Site 758) tropical Indian Ocean. The planktonic isotope record at Site 709 is compared with the benthic isotope record obtained at this site by Woodruff et al. (1990, doi:10.2973/odp.proc.sr.115.147.1990). The isotope stratigraphy is related to the biostratigraphy and the available magnetostratigraphy at the sites. Despite varying sampling density, incompleteness of isotopic records, and the condensed (or even disturbed) nature of parts of the sequences, a number of chronostratigraphic isotopic signals previously recognized in the equatorial Pacific and at other tropical Indian Ocean sites are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous 10-m-long section consisting of roughly two thirds Ethmodiscus rex (a diatom) and one third mixed planktonic foraminifera was identified in a core from 3800 m depth at 9°S on the Indian Ocean's 90°E Ridge. Radiocarbon dates place the onset of deposition of this layer at >30,000 years B.P. and its termination at close to 11,000 years B.P. However, precise dating of the foraminifera from the Ethmodiscus layer itself proved to be impossible owing to the presence of secondary calcite presumably precipitated from the pore waters. During the Holocene, high calcium carbonate content ooze free of diatoms was deposited at this locale. As the site currently lies beneath the pathway taken by upper ocean waters entering the Indian Ocean from the Pacific (via the Indonesian Straits), it appears that during glacial time, thermocline waters moving along this same path provided the silica and other nutrients required by these diatoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic and electron probe examination of some manganese nodules show that they consist of segregations of manganese-iron oxides in an interstitial material almost free of manganese but rich in iron and silicates. The segregations are widely spaced in the volcanic cores of the nodules but become more abundant towards their outer crusts where they form the centres of linked polygons of interstitial materials. Most of the minor elements are concentrated in the segregations compared to the interstitial materials. It is suggested that the structures observed result partly from solution and reprecipitation of elements in the original volcanic cores of the nodules and partly from the replacement and coating of these cores by manganese-iron oxides precipitated from sea water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed major- and trace-element chemistry is presented for 41 sediment samples from DSDP Site-223 borehole cores. A marked change in chemical (and mineralogical) character is shown at the end of the Early Miocene Epoch which relates to tectonic events and associated changes in sedimentary regime. Enrichment in the contents of such elements as Mg, Cr and Ni compared with average values for fine-grained sediments occurs throughout the sequence and is particularly marked in the upper group of samples. A basic-ultrabasic provenance is suggested - the Oman ophiolites. Leaching with combined acid-reducing agent indicated typical lithogenous-character ordering for the elements and emphasised the enrichment of Mg, Cr, Ni (and Li, Cu, Zn, Pb, Fe and Ti) over values for near-shore muds and terrigenous material. Factor analysis on the bulk chemical data identifies the main lithogenous and biogenous components, subdividing the latter. It separates the upper and lower group of chemically dissimilar sediments and delineates a Mn-hydroxide phase. It also shows the essentially independent roles of Na, Ba and P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.