951 resultados para In-loop-simulations
Resumo:
Recent progress in the experimental determination of protein structures allow to understand, at a very detailed level, the molecular recognition mechanisms that are at the basis of the living matter. This level of understanding makes it possible to design rational therapeutic approaches, in which effectors molecules are adapted or created de novo to perform a given function. An example of such an approach is drug design, were small inhibitory molecules are designed using in silico simulations and tested in vitro. In this article, we present a similar approach to rationally optimize the sequence of killer T lymphocytes receptors to make them more efficient against melanoma cells. The architecture of this translational research project is presented together with its implications both at the level of basic research as well as in the clinics.
Resumo:
The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.). In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6 mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4 g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm® M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.
Resumo:
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1–2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides
Resumo:
Punishment of non-cooperators has been observed to promote cooperation. Such punishment is an evolutionary puzzle because it is costly to the punisher while beneficial to others, for example, through increased social cohesion. Recent studies have concluded that punishing strategies usually pay less than some non-punishing strategies. These findings suggest that punishment could not have directly evolved to promote cooperation. However, while it is well established that reputation plays a key role in human cooperation, the simple threat from a reputation of being a punisher may not have been sufficiently explored yet in order to explain the evolution of costly punishment. Here, we first show analytically that punishment can lead to long-term benefits if it influences one's reputation and thereby makes the punisher more likely to receive help in future interactions. Then, in computer simulations, we incorporate up to 40 more complex strategies that use different kinds of reputations (e.g. from generous actions), or strategies that not only include punitive behaviours directed towards defectors but also towards cooperators for example. Our findings demonstrate that punishment can directly evolve through a simple reputation system. We conclude that reputation is crucial for the evolution of punishment by making a punisher more likely to receive help in future interactions, and that experiments investigating the beneficial effects of punishment in humans should include reputation as an explicit feature.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
Connectivity among populations plays a crucial role in maintaining genetic variation at a local scale, especially in small populations affected strongly by genetic drift. The negative consequences of population disconnection on allelic richness and gene diversity (heterozygosity) are well recognized and empirically established. It is not well recognized, however, that a sudden drop in local effective population size induced by such disconnection produces a temporary disequilibrium in allelic frequency distributions that is akin to the genetic signature of a demographic bottleneck. To document this effect, we used individual-based simulations and empirical data on allelic richness and gene diversity in six pairs of isolated versus well-connected (core) populations of European tree frogs. In our simulations, population disconnection depressed allelic richness more than heterozygosity and thus resulted in a temporary excess in gene diversity relative to mutation drift equilibrium (i.e., signature of a genetic bottleneck). We observed a similar excess in gene diversity in isolated populations of tree frogs. Our results show that population disconnection can create a genetic bottleneck in the absence of demographic collapse.
Resumo:
Työssä tutkittiin moniarvoisten metalliformiaattien valmistusta ioninvaihto-menetelmällä. Kirjallisuustutkimus käsitteleetunnettuja alumiiniformiaatin ja rautaformiaatin valmistusmenetelmiä, kationinvaihtohartsien ominaisuuksia, ioninvaihtohartsien selektiivisyyttä ja alumiinin, raudan, magnesiumin ja sinkin vesikemiaa. Laboratoriokokeiden avulla tutkittiin sinkki-, magnesium-, rauta(II)- ja alumiiniformiaattien valmistusta ioninvaihdolla. Kokeet suoritettiin kolonnissa, joka oli pakattu makrohuokoisella tai geelimäisellä vahvalla kationin-vaihtohartsilla. Hartsi vaihdettiin natriummuodosta metallimuotoon metallikloridi- tai metallisulfaattiliuoksella.Metalli eluoitiin hartsista natriumformiaatilla. Formiaattien valmistus onnistui makrohuokoista vahvaa kationinvaihtohartsia käyttämällä. Rauta(II)formiaatin valmistus oli vaikeampaa kuin muiden formiaattien, koska rauta(II) hapettui osittain rauta(III):ksi valmistuksen aikana. Alumiiniformiaattia valmistettiin käyttäen sekä makrohuokoista että geelimäistä hartsia. Makrohuokoisen hartsin havaittiin soveltuvan geelimäistä hartsia paremmin alumiiniformiaatin valmistukseen. Kungeelimäistä hartsia käytettiin, noin 30 % alumiinista jäi kiinni hartsiin eikä siten eluoitunut. Ioninvaihdon selektiivisyyskertoimien saamiseksi suoritettiin tasapainokokeita. Selektiivisyyskertoimia käytettiin ioninvaihtokolonnin dynaamisessa simuloinnissa. Ioninvaihdon simuloiminen dynaamisella kolonnimallilla onnistui hyvin.
Resumo:
Tässä diplomityössä on tutkittu lämpötilakerrostumien syntymistä RENATA-koelaitteistolla, joka muistutti geometrialtaan painevesireaktorin paineastian ylätilaa. Kokeet tehtiin siten, että aluksi RENATA täytettiin lämpimällä vedellä, jonka jälkeen koelaitteistoon juoksutettiin pohjasta käsin kylmää vettä. Kokeiden tuloksia verrattiin kirjallisuudessa esitettyyn korrelaatioon. Koetilanne mallinnettiin myös Fluent-virtauslaskentaohjelmalla, jolloin saatiin tietoa ohjelman kyvystä käsitellä lämpötilakerrostumia. Kokeiden tuloksissa havaittiin olevan selvää yhteyttä korrelaatioon. Korrelaation kriittistä rajaa suuremmilla arvoilla kylmä vesi kerrostui lämpimän veden alapuolelle. Lämpimän ja kylmän veden väliin muodostui muutaman senttimetrin paksuinen rajakerros, lämpötilakerrostuma, jossa lämpötilan muutos oli suurimmillaan parinkymmenen asteen luokkaa. Tämä lämpötilakerrostuma nousi hitaasti ylöspäin kokeen edetessä. Vastaavasti korrelaation kriittistä rajaa pienemmillä arvoilla lämmin ja kylmä vesi sekoittuivat keskenään. Myös Fluentilla lasketuissa simuloinneissa kylmä vesi kerrostui lämpimän veden alapuolelle. Lämpötilakerrostuma ei kuitenkaan noussut ylöspäin niin kuin kokeessa tapahtui, vaan se seisahtui koelaitteiston yläosaan.
Resumo:
The aim of this work is to study the effect of different fuel mixtures on the operation of circulating fluidized bed (CFB) boiler. The applicability of heat balance modeling software IPSEpro to simulate CFB boiler operation is also investigated. The work discusses various types of boilers and methods of boiler operation. The fuel properties and the possible fuel influence on the boiler efficiency are described. Various biofuel types that are possible to use in combination with other fuels are presented. Some examples of the fuel mixtures use are given. A CFB boiler model has been constructed using IPSEpro and applied to analyze boiler operation outside design conditions. In the simulations, the effect of different load levels and moisture contents for the fuel mixture has been studied.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
In this thesis mainly long quasi-periodic solar oscillations in various solar atmospheric structures are discussed, based on data obtained at several wavelengths, focussing, however, mainly on radio frequencies. Sunspot (Articles II and III) and quiet Sun area (QSA) (Article I) oscillations are investigated along with quasi-periodic pulsations (QPP) in a flaring event with wide-range radio spectra (Article IV). Various oscillation periods are detected; 3–15, 35–70 and 90 minutes (QSA), 10-60 and 80-130 minutes (in sunspots at various radio frequencies), 3-5, 10-23, 220-240, 340 and 470 minutes (in sunspots at photosphere) and 8-12 and 15-17 seconds (in a solar flare at radio frequencies). Some of the oscillation periods are detected for the first time, while some of them have been confirmed earlier by other research groups. Solar oscillations can provide more information on the nature of various solar structures. This thesis presents the physical mechanisms of some solar structure oscillations. Two different theoretical approaches are chosen; magnetohydrodynamics (MHD) and the shallow sunspot model. These two theories can explain a wide range of solar oscillations from a few seconds up to some hours. Various wave modes in loop structures cause solar oscillations (<45 minutes) both in sunspots and quiet Sun areas. Periods lasting more than 45 minutes in the sunspots (and a fraction of the shorter periods) are related to sunspot oscillations as a whole. Sometimes similar oscillation periods are detected both in sunspot area variations and respectively in magnetic field strength changes. This result supports a concept that these oscillations are related to sunspot oscillations as a whole. In addition, a theory behind QPPs at radio frequencies in solar flares is presented. The thesis also covers solar instrumentation and data sources. Additionally, the data processing methods are presented. As the majority of the investigations in this thesis focus on radio frequencies, also the most typical radio emission mechanisms are presented. The main structures of the Sun, which are related to solar oscillations, are also presented. Two separate projects are included in this thesis. Solar cyclicity is studied using the extensively large solar radio map archieve from Metsähovi Radio Observatory (MRO) at 37 GHz, between 1978 and 2011 (Article V) covering two full solar cycles. Also, some new solar instrumentation (Article VI) was developed during this thesis.
Resumo:
Two field experiments were conducted to evaluate the effects of multispecies weed competition on wheat grain yield and to determine their economic threshold on the crop. The experiments were conducted in 2002, on two sites in Iran: at the Agricultural Research Station on Ferdowsi University of Mashhad (E1) and on the fields of Shirvan's Agricultural College (E2). A 15 x 50 m area of a 15 ha wheat field in E1 and a 15 x 50 m area of a 28 ha wheat field in E2 were selected as experimental sites. These areas were managed like other parts of the fields, except for the use of herbicides. At the beginning of the shooting stage, 30 points were randomly selected by dropping a 50 x 50 cm square marker on each site. The weeds present in E1 were: Avena ludoviciana, Chenopodium album, Solanum nigrum, Stellaria holostea, Convolvulus spp., Fumaria spp., Sonchus spp., and Polygonum aviculare. In E2 the weeds were A. ludoviciana, Erysimum sp., P. aviculare, Rapistrum rugosum, C. album, Salsola kali, and Sonchus sp. The data obtained within the sampled squares were submitted to regression equations and weeds densities were calculated in terms of TCL (Total Competitive Load). The regression analysis model indicated that only A. ludoviciana, Convolvulus spp. and C. album, in E1; and A. ludoviciana, S. kali, and R. rugosum, in E2 had a significant effect on the wheat yield reduction. Weed economic thresholds were 5.23 TCL in E1 and 6.16 TCL in E2; which were equivalent to 5 plants m-2 of A. ludoviciana or 12 plants m-2 of Convolvulus spp. or 19 plants m-2 of C. album in E1; and 6 plants m-2 A. ludoviciana, 13 plants m-2 S. kali and 27 plants m-2 R. rugosum in E2. Simulations of economic weed thresholds using several wheat grain prices and weed control costs allowed a better comparison of the experiments, suggesting that a more competitive crop at location E1 than at E2 was the cause of a lower weed competitive ability at the first location.
Resumo:
Lappeenrannan teknillinen yliopisto tutkii älykkäiden sähköverkkojen kehittämistä. Yliopisto on hankkinut sähköverkkoonsa tuuliturbiinin ja aurinkopaneeleita, joilla pystytään tuottamaan sähköenergiaa sähköverkkoon. Näitä tuotantoja voidaan käyttää myös tutkimuksessa. Tässä työssä luodaan simulaatiomalli yliopiston sähköverkosta Matlab® Simulink® -ohjelmalla. Simulaatiomalliin mallinnetaan yliopiston sisäinen keskijänniteverkko ja osa pienjänniteverkosta. Simulaatiomalli toteutetaan ohjelman valmiilla komponenteilla, joihin lasketaan tarvittavat parametrit. Tuuliturbiinin ja aurinkopaneelien sähköntuotantotehot määritetään säätiladatojen avulla. Verkon komponenteille lasketaan arvot komponenttien tyyppitietojen perusteella ja asetetaan simulaatiomallin parametreiksi. Simulaatiomalli luodaan yliopiston sisäisen verkon tehonjaon tarkastelemiseksi. Työssä selvitetään myös mahdollisuuksia luodun simulaatiomallin käyttämiseen vikatilanteiden tarkastelussa.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.