862 resultados para ICU family members
Resumo:
Background/significance. Mental illness stigma is a matter of great concern to family caregivers. Few research studies have been conducted in the Arab World on family caregivers' perception of stigma associated with caring for a mentally ill relative. Review of the literature on measurement of the concept of stigma related to caring for a mentally ill relative yielded no instrument appropriate for use in a Jordanian sample. Reliable and valid instruments to measure stigma perception among family caregivers are needed for research and practice, particularly in Arabic speaking populations. ^ Purpose. The purposes of this study were: (1) translate the Stigma-Devaluation scale (SDS) into Arabic, modifying it to accurately reflect the cultural parameters specific to Jordan, and (2) test the reliability, the content and construct validity of the Arabic version of the SDS for use among a sample of family members of mentally ill relatives in Jordan. ^ Design. Methodologic, cross-sectional. ^ Methods. The SDS was translated into Arabic language, modified and culturally adapted to the Jordanian culture by a translation model which incorporates a cultural adaptation process. The Arabic SDS was evaluated in a sample of 164 family caregivers in the outpatient mental health clinic in Irbid-Jordan. Cronbach's alpha estimation of internal consistency was used to assess the reliability of the SDS. Construct validity was determined by confirmatory factor analysis (CFA). Measurements of content validity and reading level of the Arabic SDS were included. ^ Findings. Content Validity Index was determined to be 1.0. Reading level of the Arabic SDS was considered at a 6th grade or lower Cronbach's alpha coefficient of the modified Arabic SDS total scale was .87. Initial results of CFA did not fully support the proposed factor structures of the SDS or its subscales. After modifications, the indices indicated that the modified model of each subscale had satisfactory fit. ^ Conclusion. This study provided psychometric evidence that the modified Arabic SDS translated and culturally adapted instrument, is valid and conceptually consistent with the content of the original English SDS in measuring stigma perception among families of mentally ill relatives in Jordan. ^
Resumo:
In this essay I review a recent research study from Italy, “Le Radici nel Futuro – La Continuita’ della Relazione Genitoriale oltre la Crisi Familiare,” edited by Paola Dallanegra (2005). The contributors focus on “Spazio Neutro,” a multi-purpose child welfare agency in southern Italy that facilitates parent-child visiting and relationships between children placed in out-of-home care and their families. They delineate and illustrate, through comments from family members, selected principles and strategies for maintaining such continuity throughout the out-of-home placement.
Resumo:
The involvement of members of owners' families in the running of large family businesses in Mexico is decreasing. Although family members still hold key posts such as that of CEO, other executive posts tend to be delegated to professional salaried managers. Top managers, including family members, share some common characteristics. They are young compared with managers in other developed countries, their quality as human resources is high, and many of them are graduates of overseas MBA courses. Most of them are sufficiently experienced. Improvement of quality among top managers is a recent phenomenon in Mexico, and has been encouraged mainly by the following two factors. First, globalization of business activities was promoted by intense competition among firms under conditions of market liberalization. In order to equip themselves with the ability to cope with the globalization of their operations, large family businesses tried hard to improve the quality of top management, by training and educating existing managers, and/or by recruiting managers in the outside labor market. Second, developments in the Mexican economy during the 1990s led to a growth in the labor market for top managers Thus, business restructuring caused by bankruptcy, as well as mergers and acquisitions, privatization and so on, led to the dismissal of business managers who then entered the labor market in large numbers. The increasing presence of these managers in the labor market helped family businesses to recruit well-qualified senior executives.
Resumo:
Indigenous firms in Mexico, as in most developing countries, take the shape of family businesses. Regardless of size, the most predominant ones are those owned and managed by one or more families or descendent families of the founders. From the point of view of economics and business administration, family business is considered to have variety of limitations when it seeks to grow. One of the serious limitations is concerning human resource, which is revealed at the time of management succession. Big family businesses in Mexico deal with human resource limitations adopting measures such as the education and training of the successors, the establishment of management structure that makes control by the owner family possible and divisions of roles among the owner family members, and between the owner family members and the salaried managers. Institutionalization is a strategy that considerable number of family businesses have adopted in order to undergo the succession process without committing serious errors. Institutionalization is observed in such aspects as the establishment of the requisite condition to be met by the candidate of future successor and the screening by an institution which is independent of the owner family. At present these measures allow for the continuation of family businesses in an extremely competitive environment.
Resumo:
Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z,13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by β-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles “oxylipin signatures.” Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the α-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.
Resumo:
We present evidence that the sporulation protein SpoIVFB of Bacillus subtilis is a member of a newly recognized family of metalloproteases that have catalytic centers adjacent to or within the membrane. SpoIVFB is required for converting the membrane-associated precursor protein, pro-σK, to the mature and active transcription factor σK by proteolytic removal of an N-terminal extension of 20 amino acids. SpoIVFB and other family members share the conserved sequence HEXXH, a hallmark of metalloproteases, as well as a second conserved motif NPDG, which is unique to the family. Both motifs, which are expected to form the catalytic center of the protease, overlap hydrophobic segments that are predicted to be separate transmembrane domains. The only other characterized member of this family of membrane-embedded metalloproteases is the mammalian Site-2 protease (S2P), which is required for the intramembrane cleavage of the eukaryotic transcription factor sterol regulatory element binding protein (SREBP). We report that amino acid substitutions in the two conserved motifs of SpoIVFB impair pro-σK processing and σK-directed gene expression during sporulation. These results and those from a similar analysis of S2P support the interpretation that both proteins are founding members of a family of metalloproteases involved in the activation of membrane-associated transcription factors. Thus, the pathways that govern the activation of the prokaryotic transcription factor pro-σK and the mammalian transcription factor SREBP not only are analogous but also use processing enzymes with strikingly homologous features.
Resumo:
The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule with sequence homology to PTCH, has been identified. To characterize both PTCH molecules with respect to the various Hedgehog proteins, we have isolated the human PTCH2 gene. Biochemical analysis of PTCH and PTCH2 shows that they both bind to all hedgehog family members with similar affinity and that they can form a complex with SMO. However, the expression patterns of PTCH and PTCH2 do not fully overlap. While PTCH is expressed throughout the mouse embryo, PTCH2 is found at high levels in the skin and in spermatocytes. Because Desert Hedgehog (Dhh) is expressed specifically in the testis and is required for germ cell development, it is likely that PTCH2 mediates its activity in vivo. Chromosomal localization of PTCH2 places it on chromosome 1p33–34, a region deleted in some germ cell tumors, raising the possibility that PTCH2 may be a tumor suppressor in Dhh target cells.
Resumo:
The trithorax gene family contains members implicated in the control of transcription, development, chromosome structure, and human leukemia. A feature shared by some family members, and by other proteins that function in chromatin-mediated transcriptional regulation, is the presence of a 130- to 140-amino acid motif dubbed the SET or Tromo domain. Here we present analysis of SET1, a yeast member of the trithorax gene family that was identified by sequence inspection to encode a 1080-amino acid protein with a C-terminal SET domain. In addition to its SET domain, which is 40–50% identical to those previously characterized, SET1 also shares dispersed but significant similarity to Drosophila and human trithorax homologues. To understand SET1 function(s), we created a null mutant. Mutant strains, although viable, are defective in transcriptional silencing of the silent mating-type loci and telomeres. The telomeric silencing defect is rescued not only by full-length episomal SET1 but also by the conserved SET domain of SET1. set1 mutant strains display other phenotypes including morphological abnormalities, stationary phase defects, and growth and sporulation defects. Candidate genes that may interact with SET1 include those with functions in transcription, growth, and cell cycle control. These data suggest that yeast SET1, like its SET domain counterparts in other organisms, functions in diverse biological processes including transcription and chromatin structure.
Resumo:
Quiescent mouse embryonic C3H/10T½ cells are more resistant to different proapoptotic stimuli than are these cells in the exponential phase of growth. However, the exponentially growing 10T½ cells are resistant to inhibitors of RNA or protein synthesis, whereas quiescent cells die upon these treatments. Conditioned medium from quiescent 10T½ cells possesses anti-apoptotic activity, suggesting the presence of protein(s) that function as an inhibitor of the apoptotic program. Using differential display technique, we identified and cloned a cDNA designated sarp1 (secreted apoptosis-related protein) that is expressed in quiescent but not in exponentially growing 10T½ cells. Hybridization studies with sarp1 revealed two additional family members. Cloning and sequencing of sarp2 and sarp3 revealed 38% and 40% sequence identity to sarp1, respectively. Human breast adenocarcinoma MCF7 cells stably transfected with sarp1 or infected with SARP1-expressing adenovirus became more resistant, whereas cells transfected with sarp2 displayed increased sensitivity to different proapoptotic stimuli. Expression of sarp family members is tissue specific. sarp mRNAs encode secreted proteins that possess a cysteine-rich domain (CRD) homologous to the CRD of frizzled proteins but lack putative membrane-spanning segments. Expression of SARPs modifies the intracellular levels of β-catenin, suggesting that SARPs interfere with the Wnt–frizzled proteins signaling pathway.
Resumo:
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
Resumo:
Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from whole brain poly(A)+ RNA that encodes a predicted 38-aa peptide, structurally related to the other known mammalian family members, CRF and Ucn. Ucn II binds selectively to the type 2 CRF receptor (CRF-R2), with no appreciable activity on CRF-R1. Transcripts encoding Ucn II are expressed in discrete regions of the rodent central nervous system, including stress-related cell groups in the hypothalamus (paraventricular and arcuate nuclei) and brainstem (locus coeruleus). Central administration of 1–10 μg of peptide elicits activational responses (Fos induction) preferentially within a core circuitry subserving autonomic and neuroendocrine regulation, but whose overall pattern does not broadly mimic the CRF-R2 distribution. Behaviorally, central Ucn II attenuates nighttime feeding, with a time course distinct from that seen in response to CRF. In contrast to CRF, however, central Ucn II failed to increase gross motor activity. These findings identify Ucn II as a new member of the CRF family of neuropeptides, which is expressed centrally and binds selectively to CRF-R2. Initial functional studies are consistent with Ucn II involvement in central autonomic and appetitive control, but not in generalized behavioral activation.
Resumo:
The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil–forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a “class E vps phenotype.” Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the “Snf7-family” members are involved in a cargo-specific event.
Resumo:
Members of the Snail family of zinc finger transcription factors are known to play critical roles in neurogenesis in invertebrates, but none of these factors has been linked to vertebrate neuronal differentiation. We report the isolation of a gene encoding a mammalian Snail family member that is restricted to the nervous system. Human and murine Scratch (Scrt) share 81% and 69% identity to Drosophila Scrt and the Caenorhabditis elegans neuronal antiapoptotic protein, CES-1, respectively, across the five zinc finger domain. Expression of mammalian Scrt is predominantly confined to the brain and spinal cord, appearing in newly differentiating, postmitotic neurons and persisting into postnatal life. Additional expression is seen in the retina and, significantly, in neuroendocrine (NE) cells of the lung. In a parallel fashion, we detect hScrt expression in lung cancers with NE features, especially small cell lung cancer. hScrt shares the capacity of other Snail family members to bind to E-box enhancer motifs, which are targets of basic helix–loop–helix (bHLH) transcription factors. We show that hScrt directly antagonizes the function of heterodimers of the proneural bHLH protein achaete-scute homolog-1 and E12, leading to active transcriptional repression at E-box motifs. Thus, Scrt has the potential to function in newly differentiating, postmitotic neurons and in cancers with NE features by modulating the action of bHLH transcription factors critical for neuronal differentiation.
Resumo:
Various genetic conditions produce dysfunctional osteoclasts resulting in osteopetrosis or osteosclerosis. These include human pycnodysostosis, an autosomal recessive syndrome caused by cathepsin K mutation, cathepsin K-deficient mice, and mitf mutant rodent strains. Cathepsin K is a highly expressed cysteine protease in osteoclasts that plays an essential role in the degradation of protein components of bone matrix. Cathepsin K also is expressed in a significant fraction of human breast cancers where it could contribute to tumor invasiveness. Mitf is a member of a helix–loop–helix transcription factor subfamily, which contains the potential dimerization partners TFE3, TFEB, and TFEC. In mice, dominant negative, but not recessive, mutations of mitf, produce osteopetrosis, suggesting a functional requirement for other family members. Mitf also has been found—and TFE3 has been suggested—to modulate age-dependent changes in osteoclast function. This study identifies cathepsin K as a transcriptional target of Mitf and TFE3 via three consensus elements in the cathepsin K promoter. Additionally, cathepsin K mRNA and protein were found to be deficient in mitf mutant osteoclasts, and overexpression of wild-type Mitf dramatically up-regulated expression of endogenous cathepsin K in cultured human osteoclasts. Cathepsin K promoter activity was disrupted by dominant negative, but not recessive, mouse alleles of mitf in a pattern that closely matches their osteopetrotic phenotypes. This relationship between cathepsin K and the Mitf family helps explain the phenotypic overlap of their corresponding deficiencies in pycnodysostosis and osteopetrosis and identifies likely regulators of cathepsin K expression in bone homeostasis and human malignancy.
Resumo:
The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.