991 resultados para I ANTIBODIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The cysteine-rich/spacer domains of ADAMTS13 contain a major binding site for antibodies in patients with acquired thrombotic thrombocytopenic purpura (TTP). OBJECTIVE: To study the heterogeneity of the antibody response towards these domains an immunoglobulin V-gene phage-display library was constructed to isolate monoclonal anti-ADAMTS13 antibodies from the immunoglobulin repertoire of a patient with acquired TTP. METHODS: Combined variable heavy chain (VH) and variable light chain (VL) segments, expressed as single-chain Fv fragments (scFv), were selected for binding to an ADAMTS13 fragment consisting of the disintegrin/thrombospondin type-1 repeat 1 (TSP1)/cysteine-rich/spacer domains. RESULTS: Seven different scFv antibody clones were identified that were assigned to four groups based on their homology to VH germline gene segments. Epitope-mapping revealed that scFv I-9 (VH1-69), I-26 (VH1-02), and I-41 (VH3-09) bind to an overlapping binding site in the ADAMTS13 spacer domain, whereas scFv I-16 (VH3-07) binds to the disintegrin/TSP1 domains. The affinity of scFv for the disintegrin/TSP1/cysteine-rich/spacer domain was determined by surface plasmon resonance analysis and the dissociation constants ranged from 3 to 254 nM. The scFv partially inhibited ADAMTS13 activity. However, full-length IgG prepared from the variable domains of scFv I-9 inhibited ADAMTS13 activity more profoundly. Plasma of six patients with acquired TTP competed for binding of scFv I-9 to ADAMTS13. CONCLUSION: Our data indicate that multiple B-cell clones producing antibodies directed against the spacer domain are present in the patient analyzed in this study. Our findings also suggest that antibodies with a similar epitope specificity as scFv I-9 are present in plasma of other patients with acquired TTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glanzmann's thrombasthenia (GT) arises from a qualitative or quantitative defect in the GPIIb-IIIa complex (integrin alphaIIbbeta3), the mediator of platelet aggregation. We describe a patient in whom clinical and laboratory findings typical of type I GT were found together with a second pathology involving neurological and other complications symptomatic of tuberous sclerosis. Analysis of platelet proteins by Western blotting revealed trace amounts of normally migrating GPIIb and equally small amounts of GPIIIa of slightly slower than normal migration. Flow cytometry confirmed a much decreased binding to platelets of monoclonal antibodies to GPIIb, GPIIIa or GPIIb-IIIa, and an antibody to the alphav subunit also showed decreased binding. Nonradioactive PCR single-strand conformation polymorphism analysis followed by direct sequencing of PCR-amplified DNA fragments showed a homozygous point mutation (T to C) at nucleotide 1722 of GPIIIa cDNA and which led to a Cys542-->Arg substitution in the GPIIIa protein. The mutation gave rise to a HinP1 I restriction site in exon 11 of the GPIIIa gene and allele-specific restriction enzyme analysis of family members confirmed that a single mutated allele was inherited from each parent. This amino acid substitution presumably changes the capacity for disulphide bond formation within the cysteine-rich core region of GPIIIa and its study will provide new information on GPIIb-IIIa and alphavbeta3 structure and biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. METHODS: Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. RESULTS: After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. Beta-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. CONCLUSIONS: In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type II cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P < 0.0001). Blocking Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The treatment of lupus nephritis is still an unmet medical need requiring new therapeutic approaches. Our group found recently that irinotecan, an inhibitor of topoisomerase I (topo I), reversed proteinuria and prolonged survival in mice with advanced lupus nephritis. While irinotecan is known to stabilize the complex of topo I and DNA, the enzyme tyrosyl-DNA phosphodiesterase 1 (TDP-1) functions in an opposing manner by releasing topo I from DNA. Therefore, we undertook this study to test whether the TDP-1 inhibitor furamidine has an additional effect on lupus nephritis when used in combination with irinotecan. METHODS NZB/NZW mice were treated with low-dose irinotecan and furamidine either alone or in combination beginning at age 26 weeks. DNA relaxation was visualized using gel electrophoresis. Binding of anti-double-stranded DNA (anti-dsDNA) antibodies to DNA modified by topo I, TDP-1, and the topo I inhibitor camptothecin was determined by enzyme-linked immunosorbent assay. RESULTS Compared to treatment with either agent alone, simultaneous treatment with low-dose irinotecan and furamidine significantly improved survival of NZB/NZW mice. Similar to what has been previously shown for irinotecan alone, the combination treatment did not change the levels of anti-dsDNA antibodies. In vitro, recombinant TDP-1 increased topo I-mediated DNA relaxation, resulting in enhanced binding of anti-dsDNA antibodies. In combination with topo I and camptothecin, TDP-1 reversed the inhibitory effects of camptothecin on DNA relaxation and anti-dsDNA binding. CONCLUSION Affecting DNA relaxation by the enzymes topo I and TDP-1 and their inhibitors may be a promising approach for the development of new targeted therapies for systemic lupus erythematosus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuropeptide somatostatin is a widely distributed general inhibitor of endocrine, exocrine, gastrointestinal and neural functions. The biological actions of somatostatin are initiated by interaction with high affinity, plasma membrane somatostatin receptors (sst receptors). Five sst receptor subtypes have been cloned and sequence analysis shows they are all members of the G protein coupled receptor superfamily. The G proteins play a pivotal role in sst receptor signal transduction and the specificity of somatostatin receptor-G protein coupling defines the possible range of cellular responses. However, the data for endogenous sst receptor and G protein coupling is very limited, and even when it is available, the sst receptor subtypes involved in G protein coupling and signal transduction are unknown due to the expression of multiple sst receptor subtypes in target cell lines or tissues of somatostatin.^ In an effort to characterize each individual sst receptor subtypes, antisera against unique C-terminal regions of different sst receptor subtypes have been developed in our lab. In this report, antisera made against the sst1, sst2A and sst4 receptors are characterized. They are highly specific to their corresponding receptors and efficiently immunoprecipitate the sst receptors. Using these antibodies, the cell lines expressing these sst receptor subtypes were identified with both immunoprecipitation and Western blot methods. The development of sst receptor subtype specific antibodies make it possible to determine the specificity of the sst receptor subtype and G protein coupling in target cells or tissues expressing multiple sst receptors, two questions were addressed by this thesis: (1) whether different cellular environments affect receptor subtype and G protein coupling; (2) whether different sst receptors couple to different G proteins in similar cellular environments.^ Taken together our findings, both sst1 and sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells, G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in GH$\sb4$C$\sb1$ cells. Further, sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in AR4-2J cells while sst4 receptors couple with G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells. Therefore, the G protein coupling of the same sst receptors in different cell lines is basically similar in that they all couple with multiple $\alpha$-subunits of the G$\rm \sb{i}$ proteins, suggesting cellular environment has little effect on receptor and G protein coupling. Moreover, different sst receptors have similar G protein coupling specificities in the same cell line, suggesting components other than receptor and G$\alpha$ subunits in the signal transduction pathways may contribute to specific functions of each sst receptor subtype. This series of experiments represent a novel approach in dissecting signal transduction pathways and may have general application in the field. Furthermore, this is the first systematic study of sst receptor subtype and G protein $\alpha$-subunit interaction in both transfected cells and in normal cell lines. The information generated will be very useful in our understanding of sst receptor signal transduction pathways and in directing future sst receptor research. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein–protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For efficient ligand binding, integrins must be activated. Specifically, a conformational change has been proposed in a ligand binding domain present within some integrins, the inserted (I) domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340]. This proposal remains controversial, however, despite extensive crystal structure studies on the I domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340; Liddington, R. & Bankston, L. (1998) Structure (London) 6, 937–938; Qu, A. & Leahy, D. J. (1996) Structure (London) 4, 931–942; and Baldwin, E. T., Sarver, R. W., Bryant, G. L., Jr., Curry, K. A., Fairbanks, M. B., Finzel, B. C., Garlick, R. L., Heinrikson, R. L., Horton, N. C. & Kelly, L. L. (1998) Structure (London) 6, 923–935]. By defining the residues present in the epitope of a mAb against the human Mac-1 integrin (αMβ2, CD11b/CD18) that binds only the active receptor, we provide biochemical evidence that the I domain itself undergoes a conformational change with activation. This mAb, CBRM1/5, binds the I domain very close to the ligand binding site in a region that is widely exposed regardless of activation as judged by reactivity with other antibodies. The conformation of the epitope differs in two crystal forms of the I domain, previously suggested to represent active and inactive receptor. Our data suggests that conformational differences in the I domain are physiologically relevant and not merely a consequence of different crystal lattice interactions. We also demonstrate that the transition between the two conformational states depends on species-specific residues at the bottom of the I domain, which are proposed to be in an interface with another integrin domain, and that this transition correlates with functional activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a critical transducer of signals originating from the B cell antigen receptor (BCR). Dosage, sequential phosphorylation, and protein interactions are interdependent mechanisms influencing Btk function. Phosphopeptide-specific mAbs recognizing two distinct phosphotyrosine modifications were used to quantify Btk activation by immunofluorescent techniques during B cell stimulation. In a population of cultured B cells stimulated by BCR crosslinking and analyzed by flow cytometry, transient phosphorylation of the regulatory Btk tyrosine residues (551Y and 223Y) was detected. The kinetics of phosphorylation of the residues were temporally distinct. Tyrosine 551, a transactivating substrate site for Src-family kinases, was maximally phosphorylated within ≈30 seconds of stimulation as monitored by flow cytometry. Tyrosine 223, an autophosphorylation site within the SH3 domain, was maximally phosphorylated at ≈5 minutes. Btk returned to a low tyrosine phosphorylation level within 30 minutes, despite persistent elevation of global tyrosine phosphorylation. Colocalization of activated Btk molecules with the crosslinked BCR signaling complex was observed to coincide with the period of maximal Btk tyrosine phosphorylation when stimulated B cells were analyzed with confocal microscopy. The results of these in situ temporal and spatial analyses imply that Btk signaling occurs in the region of the Ig receptor signaling complex, suggesting a similar location for downstream targets of its activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.