921 resultados para Hypertension. Angiotensin-converting Enzyme (ACE). Elderly. Bodybuilding
Resumo:
BACKGROUND: Historically, there have been few drug trials for antihypertensive treatment in childhood and recommendations have been extrapolated from data obtained in adulthood. During the last decade an increased awareness of the risks of childhood hypertension stimulated clinical trials of antihypertensive agents in children. OBJECTIVE: The aim of this article is to systematically review the studies published between 1995 and 2006 that deal with the effect of antihypertensive drugs on childhood hypertension or proteinuria. METHODS: Medline, Current Contents, personal files and reference lists were used as data sources. RESULTS: Fifty-two out of 79 initially found reports were excluded. Consequently 27 articles were retained for the final analysis. The blood pressure reduction was similar with angiotensin-converting enzyme inhibitors (10.7/8.1 mmHg), angiotensin II receptor antagonists (10.5/6.9 mmHg) and calcium-channel blockers (9.3/7.2 mmHg). In addition angiotensin-converting enzyme inhibitors (by 49%) and angiotensin II receptor antagonists (by 59%) significantly reduced pathological proteinuria. CONCLUSIONS: The blood pressure reduction of angiotensin-converting enzyme inhibitors, angiotensin II receptor antagonists and calcium-channel blockers is almost identical. In children with pathological proteinuria angiotensin-converting enzyme inhibitors or angiotensin II antagonists are superior to calcium-channel blockers.
Resumo:
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
Scleroderma renal crisis (SRC) is a major complication in patients with systemic sclerosis (SSc). It is characterized by malignant hypertension and oligo/anuric acute renal failure. SRC occurs in 5% of patients with SSc, particularly in the first years of disease evolution and in the diffuse form. The occurrence of SRC is more common in patients treated with glucocorticoids, the risk increasing with increasing dose. Left ventricular insufficiency and hypertensive encephalopathy are typical clinical features. Thrombotic microangiopathy is detected in 43% of the cases. Anti-RNA-polymerase III antibodies are present in one third of patients who develop SRC. Renal biopsy is not necessary if SRC presents with classical features. However, it can help to define prognosis and guide treatment in atypical forms. The prognosis of SRC has dramatically improved with the introduction of angiotensin-converting enzyme inhibitors (ACEi). However, 5 years survival in SSc patients who develop the full picture of SRC remains low (65%). SRC is often triggered by nephrotoxic drugs and/or intravascular volume depletion. The treatment of SRC relies on aggressive control of blood pressure with ACEi, if needed in combination with other types of antihypertensive drugs. Dialysis is frequently indicated, but can be stopped in approximately half of patients, mainly in those for whom a perfect control of blood pressure is obtained. Patients who need dialysis for more than 2 years qualify for renal transplantation.
Resumo:
Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.
Resumo:
We report here that a cancer gene therapy protocol using a combination of IL-12, pro-IL-18, and IL-1β converting enzyme (ICE) cDNA expression vectors simultaneously delivered via gene gun can significantly augment antitumor effects, evidently by generating increased levels of bioactive IL-18 and consequently IFN-γ. First, we compared the levels of IFN-γ secreted by mouse splenocytes stimulated with tumor cells transfected with various test genes, including IL-12 alone; pro-IL-18 alone; pro-IL-18 and ICE; IL-12 and pro-IL-18; and IL-12, pro-IL-18, and ICE. Among these treatments, the combination of IL-12, pro-IL-18, and ICE cDNA resulted in the highest level of IFN-γ production from splenocytes in vitro, and similar results were obtained when these same treatments were delivered to the skin of a mouse by gene gun and IFN-γ levels were measured at the skin transfection site in vivo. Furthermore, the triple gene combinatorial gene therapy protocol was the most effective among all tested groups at suppressing the growth of TS/A (murine mammary adenocarcinoma) tumors previously implanted intradermally at the skin site receiving DNA transfer by gene gun on days 6, 8, 10, and 12 after tumor implantation. Fifty percent of mice treated with the combined three-gene protocol underwent complete tumor regression. In vivo depletion experiments showed that this antitumor effect was CD8+ T cell-mediated and partially IFN-γ-dependent. These results suggest that a combinatorial gene therapy protocol using a mixture of IL-12, pro-IL-18, and ICE cDNAs can confer potent antitumor activities against established TS/A tumors via cytotoxic CD8+ T cells and IFN-γ-dependent pathways.
Resumo:
Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.
Resumo:
Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.
Resumo:
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for the regulation of blood pressure. In cardiac myocytes, ANP is synthesized as a precursor, pro-ANP, that is converted to biologically active ANP by an unknown membrane-associated protease. Recently, we cloned a transmembrane serine protease, corin, that is highly expressed in the heart. In this study, we examine effects of corin on pro-ANP processing. Our results show that recombinant human corin converts pro-ANP to ANP and that the cleavage in pro-ANP by corin is highly sequence specific. Our findings suggest that corin is the long-sought pro-ANP-converting enzyme and that the corin-mediated pro-ANP activation may play a role in regulating blood pressure.
Resumo:
Cytotoxic T lymphocytes (CTL) can induce apoptosis through a granzyme B-based killing mechanism. Here we show that in cells undergoing apoptosis by granzyme B, both p45 pro-interleukin 1 beta converting enzyme (ICE) and pro-CPP32 are processed. Using ICE deficient (ICE -/-) mice, embryonic fibroblasts exhibit high levels of resistance to apoptosis by granzyme B or granzyme 3, while B lymphoblasts are granzyme B-resistant, thus identifying an ICE-dependent apoptotic pathway that is activated by CTL granzymes. In contrast, an alternative ICE-independent pathway must also be activated as ICE -/- thymocytes remain susceptible to apoptosis by both granzymes. In ICE -/- B cells or HeLa cells transfected with mutant inactive ICE or Ich-1S that exhibit resistance to granzyme B, CPP32 is processed to p17 and poly(ADP-ribose) polymerase is cleaved indicating that this protease although activated was not associated with an apoptotic nuclear phenotype. Using the peptide inhibitor Ac-DEVD-CHO, apoptosis as well as p45 ICE hydrolysis are suppressed in HeLa cells, suggesting that a CPP32-like protease is upstream of ICE. In contrast, p34cdc2 kinase, which is required for granzyme B-induced apoptosis, remains inactive in ICE -/- B cells indicating it is downstream of ICE. We conclude that granzyme B activates an ICE-dependent cell death pathway in some cell types and requires a CPP32-like Ac-DEVD-CHO inhibitable protease acting upstream to initiate apoptosis.
Resumo:
Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.
Resumo:
Although proteases related to the interleukin 1 beta-converting enzyme (ICE) are known to be essential for apoptotic execution, the number of enzymes involved, their substrate specificities, and their specific roles in the characteristic biochemical and morphological changes of apoptosis are currently unknown. These questions were addressed using cloned recombinant ICE-related proteases (IRPs) and a cell-free model system for apoptosis (S/M extracts). First, we compared the substrate specificities of two recombinant human IRPs, CPP32 and Mch2 alpha. Both enzymes cleaved poly-(ADP-ribose) polymerase, albeit with different efficiencies. Mch2 alpha also cleaved recombinant and nuclear lamin A at a conserved VEID decreases NG sequence located in the middle of the coiled-coil rod domain, producing a fragment that was indistinguishable from the lamin A fragment observed in S/M extracts and in apoptotic cells. In contrast, CPP32 did not cleave lamin A. The cleavage of lamin A by Mch2 alpha and by S/M extracts was inhibited by millimolar concentrations of Zn2+, which had a minimal effect on cleavage of poly (ADP-ribose) polymerase by CPP32 and by S/M extracts. We also found that N-(acetyltyrosinylvalinyl-N epsilon-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone, which derivatizes the larger subunit of active ICE, can affinity label up to five active IRPs in S/M extracts. Together, these observations indicate that the processing of nuclear proteins in apoptosis involves multiple IRPs having distinct preferences for their apoptosis-associated substrates.
Resumo:
Three of the predominant features of apoptosis are internucleosomal DNA fragmentation, plasma membrane bleb formation, and retraction of cell processes. We demonstrate that actin is a substrate for the proapoptotic cysteine protease interleukin 1beta-converting enzyme. Actin cleaved by interleukin 1beta-converting enzyme can neither inhibit DNase I nor polymerize to its filamentous form as effectively as intact actin. These findings suggest a mechanism for the coordination of the proteolytic, endonucleolytic, and morphogenetic aspects of apoptosis.
Resumo:
Australian Aborigines are experiencing an epidemic of renal and cardiovascular disease. In late 1995 we introduced a treatment program into the Tiwi community, which has a three- to fivefold increase in death rates and a recent annual incidence of treated ESRD of 2760 per million. Eligible for treatment were people with hypertension, diabetics with micro or overt albuminuria, and all people with overt albuminuria. Treatment centered around use of perindopril (Coversyl, Servier), with other agents added to reach BP goals; attempts to control glucose and lipid levels; and health education. Thirty percent of the adult population, or 267 people, were enrolled, with a mean follow up of 3.39 yr. Clinical parameters were followed every 6 mo, and rates of terminal endpoints were compared with those of 327 historical controls matched for baseline disease severity, followed in the pretreatment program era. There was a dramatic reduction in BP in the treatment group, which was sustained through 3 yr of treatment. Albuminuria and GFR stabilized or improved. Rates of natural deaths were reduced by an estimated 50% (P = 0.012); renal deaths were reduced by 57% (P = 0.038); and nonrenal deaths by 46% (P = 0.085). Survival benefit was suggested at all levels of overt albuminuria, and regardless of diabetes status, baseline BP, or prior administration of angiotensin converting enzyme inhibitors (ACEI). No significant benefit was apparent among people without overt albuminuria, nor among those with GFR less than 60 ml/min. An estimated 13 renal deaths and 10 nonrenal deaths were prevented, with the number-needed-to-treat to avoid one terminal event of only 11.6. Falling deaths and renal failure in the whole community support these estimates. The program was extremely cost-effective. Programs like this should be introduced to all high-risk communities as a matter of urgency.
Resumo:
Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.