642 resultados para Hyperglycemic clamp
Resumo:
Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.
Resumo:
Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K+ channel Kir2.1 (KCNJ2) which is dysregulated in cardiac and vascular disorders. The 3'UTR was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known downregulator of Kir2.1 expression, and was used to investigate targeting of the Kir2.1 3'UTR by miR-212. Red/green ratio was lower in miR-212-expressing cells compared to non-targeting controls, an effect that was attenuated by mutating the predicted target site. MiR-212 also reduced inward rectifier current and Kir2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.
Resumo:
This study assessed the contribution of L-type Ca2+ channels and other Ca2+ entry pathways to Ca2+ store refilling in choroidal arteriolar smooth muscle. Voltage-clamp recordings were made from enzymatically isolated choroidal microvascular smooth muscle cells and from cells within vessel fragments (containing <10 cells) using the whole-cell perforated patch-clamp technique. Cell Ca2+ was estimated by fura-2 microfluorimetry. After Ca2+ store depletion with caffeine (10 mM), refilling was slower in cells held at -20 mV compared to -80 mV (refilling half-time was 38 +/- 10 and 20 +/- 6 s, respectively). To attempt faster refilling via L-type Ca2+ channels, depolarising steps from -60 to -20 mV were applied during a 30 s refilling period following caffeine depletion. Each step activated L-type Ca2+ currents and [Ca2+]i transients, but failed to accelerate refilling. At -80 mV and in 20 mM TEA, prolonged caffeine exposure produced a transient Ca2+-activated Cl- current (I(Cl)(Ca)) followed by a smaller sustained current. The sustained current was resistant to anthracene-9-carboxylic acid (1 mM; an I(Cl)(Ca) blocker) and to BAPTA AM, but was abolished by 1 microM nifedipine. This nifedipine-sensitive current reversed at +29 +/- 2 mV, which shifted to +7 +/- 5 mV in Ca2+-free solution. Cyclopiazonic acid (20 microM; an inhibitor of sarcoplasmic reticulum Ca2+-ATPase) also activated the nifedipine-sensitive sustained current. At -80 mV, a 5 s caffeine exposure emptied Ca2+ stores and elicited a transient I(Cl)(Ca). After 80 s refilling, another caffeine challenge produced a similar inward current. Nifedipine (1 microM) during refilling reduced the caffeine-activated I(Cl)(Ca) by 38 +/- 5 %. The effect was concentration dependent (1-3000 nM, EC50 64 nM). In Ca2+-free solution, store refilling was similarly depressed (by 46 +/- 6 %). Endothelin-1 (10 nM) applied at -80 mV increased [Ca2+]i, which subsided to a sustained 198 +/- 28 nM above basal. Cell Ca2+ was then lowered by 1 microM nifedipine (to 135 +/- 22 nM), which reversed on washout. These results show that L-type Ca2+ channels fail to contribute to Ca2+ store refilling in choroidal arteriolar smooth muscle. Instead, they refill via a novel non-selective store-operated cation conductance that is blocked by nifedipine.
Resumo:
Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.
Resumo:
In the present study we used a combination of patch clamping and fast confocal Ca2+ imaging to examine the effects of activators of the nitric oxide (NO)/cGMP pathway on pacemaker activity in freshly dispersed ICC from the rabbit urethra, using the amphotericin B perforated patch configuration of the patch-clamp technique. The nitric oxide donor, DEA-NO, the soluble guanylyl cyclase activator YC-1 and the membrane-permeant analogue of cGMP, 8-Br-cGMP inhibited spontaneous transient depolarizations (STDs) and spontaneous transient inward currents (STICs) recorded under current-clamp and voltage-clamp conditions, respectively. Caffeine-evoked Cl- currents were unaltered in the presence of SP-8-Br-PET-cGMPs, suggesting that activation of the cGMP/PKG pathway does not block Cl- channels directly or interfere with Ca2+ release via ryanodine receptors (RyR). However, noradrenaline-evoked Cl- currents were attenuated by SP-8-Br-PET-cGMPs, suggesting that activation of cGMP-dependent protein kinase (PKG) may modulate release of Ca2+ via IP3 receptors (IP3R). When urethral interstitial cells (ICC) were loaded with Fluo4-AM (2 microm), and viewed with a confocal microscope, they fired regular propagating Ca2+ waves, which originated in one or more regions of the cell. Application of DEA-NO or other activators of the cGMP/PKG pathway did not significantly affect the oscillation frequency of these cells, but did significantly reduce their spatial spread. These effects were mimicked by the IP3R blocker, 2-APB (100 microm). These data suggest that NO donors and activators of the cGMP pathway inhibit electrical activity of urethral ICC by reducing the spatial spread of Ca2+ waves, rather than decreasing wave frequency.
Resumo:
1. Measurements of artery contraction, cytosolic [Ca(2+)], and Ca(2+) permeability were made to examine contractile and cytosolic [Ca(2+)] responses of canine pulmonary arteries and isolated cells to 5-hydroxytryptamine (5-HT), and to determine the roles of intracellular Ca(2+) release and extracellular Ca(2+) entry in 5-HT responses. 2. The EC(50) for 5-HT-mediated contractions and cytosolic [Ca(2+)] increases was approximately 10(-7) M and responses were inhibited by ketanserin, a 5-HT(2A)-receptor antagonist. 3. 5-HT induced cytosolic [Ca(2+)] increases were blocked by 20 microM Xestospongin-C and by 2-APB (IC(50)=32 microM inhibitors of InsP(3) receptor activation. 4. 5-HT-mediated contractions were reliant on release of InsP(3) but not ryanodine-sensitive Ca(2+) stores. 5. 5-HT-mediated contractions and cytosolic [Ca(2+)] increases were partially inhibited by 10 microM nisoldipine, a voltage-dependent Ca(2+) channel blocker. 6. Extracellular Ca(2+) removal reduced 5-HT-mediated contractions further than nisoldipine and ablated cytosolic [Ca(2+)] increases and [Ca(2+)] oscillations. Similar to Ca(2+) removal, Ni(2+) reduced cytosolic [Ca(2+)] and [Ca(2+)] oscillations. 7. Mn(2+) quench of fura-2 and voltage-clamp experiments showed that 5-HT failed to activate any significant voltage-independent Ca(2+) entry pathways, including store-operated and receptor-activated nonselective cation channels. Ni(2+) but not nisoldipine or Gd(3+) blocked basal Mn(2+) entry. 8. Voltage-clamp experiments showed that simultaneous depletion of both InsP(3) and ryanodine-sensitive intracellular Ca(2+) stores activates a current with linear voltage dependence and a reversal potential consistent with it being a nonselective cation channel. 5-HT did not activate this current. 9. Basal Ca(2+) entry, rather than CCE, is important to maintain 5-HT-induced cytosolic [Ca(2+)] responses and contraction in canine pulmonary artery.
Resumo:
Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit regular Ca2+ oscillations that are associated with spontaneous transient inward currents (STICs) recorded under voltage clamp. Their frequency is known to be very sensitive to external Ca2+ concentration but the mechanism of this has yet to be elucidated. In the present study experiments were performed to assess the role of Na+-Ca2+ exchange (NCX) in this process. Membrane currents were recorded using the patch clamp technique and measurements of intracellular Ca2+ were made using fast confocal microscopy. When reverse mode NCX was enhanced by decreasing the external Na+ concentration [Na+]o from 130 to 13 mM, the frequency of global Ca2+ oscillations and STICs increased. Conversely, inhibition of reverse mode NCX by KB-R7943 and SEA0400 decreased the frequency of Ca2+ oscillations and STICs. Application of caffeine (10 mM) and noradrenaline (10 microM) induced transient Ca2+-activated chloride currents (I(ClCa)) at -60 mV due to release of Ca2+ from ryanodine- and inositol trisphosphate (IP3)-sensitive Ca2+ stores, respectively, but these responses were not blocked by KB-R7943 or SEA0400 suggesting that neither drug blocked Ca2+-activated chloride channels or Ca2+ release from stores. Intact strips of rabbit urethra smooth muscle develop spontaneous myogenic tone. This tone was relaxed by application of SEA0400 in a concentration-dependent fashion. Finally, single cell RT-PCR experiments revealed that isolated ICC from the rabbit urethra only express the type 3 isoform of the Na+-Ca2+ exchanger (NCX3). These results suggest that frequency of spontaneous activity in urethral ICC can be modulated by Ca2+ entry via reverse NCX.
Resumo:
Measurements were made (using fast confocal microscopy) of intracellular Ca2+ levels in fluo-4 loaded interstitial cells isolated from the rabbit urethra. These cells exhibited regular Ca2+ oscillations which were associated with spontaneous transient inward currents recorded under voltage clamp. Interference with D-myo-inositol 1,4,5-trisphosphate (IP3) induced Ca2+ release using 100 microm 2-aminoethoxydiphenyl borate, and the phospholipase C (PLC) inhibitors 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate and U73122 decreased the amplitude of spontaneous oscillations but did not abolish them. However, oscillations were abolished when ryanodine receptors were blocked with tetracaine or ryanodine. Oscillations ceased in the absence of external Ca2+, and frequency was directly proportional to the external Ca2+ concentration. Frequency of Ca2+ oscillation was reduced by SKF-96365, but not by nifedipine. Lanthanum and cadmium completely blocked oscillations. These results suggest that Ca2+ oscillations in isolated rabbit urethral interstitial cells are initiated by Ca2+ release from ryanodine-sensitive intracellular stores, that oscillation frequency is very sensitive to the external Ca2+ concentration and that conversion of the primary oscillation to a propagated Ca2+ wave depends upon IP3-induced Ca2+ release.
Resumo:
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.
Resumo:
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.
Resumo:
Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility.
Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors.
Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity.
Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Resumo:
Objective: The purpose of this study was to examine the effect of maternal type 1 diabetes on the structure and function of the embryonic and neonatal mouse heart.
Methods: Type 1 diabetes was induced in female C57BL6/J mice using streptozotocin. Embryonic (n = 105) and neonatal hearts (n = 46) were examined using high-frequency ultrasound (US) and a cohort of E18.5 (n = 34) and 1-day-old pup hearts (n = 27) underwent histological examination.
Results: Global cardiac hypertrophy in late gestation (E18.5) was evident on US in the diabetic group compared to controls with increased interventricular septal (IVS) thickness (0.44 ± 0.08 mm vs 0.36 ± 0.08 mm, P < .05) and increased left ventricular wall thickness (0.38 ± 0.04 mm vs 0.29 mm ± 0.05, P < .01). Isovolumetric relaxation time was initially prolonged in the diabetic group but resolved by E18.5 to control values. Histological examination at E18.5 demonstrated increased transverse measurements (2.42 ± 0.72 mm/g vs 1.86 ± 0.55 mm/g, P < .05) and increased IVS thickness (0.64 ± 0.20 mm/g vs 0.43 ± 0.15 mm/g, P < .05) in diabetic embryos compared to control embryos.
Conclusion: Maternal hyperglycemia has severe effects on offspring with evidence of cardiac impairment and cardiac hypertrophy in the embryo. These effects persisted in the 1-day old but attenuated in the 1-week old suggesting cardiac remodeling after the hyperglycemic milieu of pregnancy is removed
Resumo:
BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated.
OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways.
METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1.
RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current.
CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.
Resumo:
Purpose: This study tested the role of K(+)- and Cl(-)-channels in retinal arteriolar smooth muscle in the regulation of retinal blood flow.
Methods: Studies were carried out in adult Male Hooded Lister rats. Selectivity of ion channel blockers was established using electrophysiological recordings from smooth muscle in isolated arterioles under voltage clamp conditions. Leukocyte velocity and retinal arteriolar diameters were measured in anesthetised animals using leukocyte fluorography and fluorescein angiography imaging with a confocal scanning laser ophthalmoscope. These values were used to estimate volumetric flow, which was compared between control conditions and following intravitreal injections of ion channel blockers, either alone or in combination with the vasoconstrictor potent Endothelin 1 (Et1).
Results: Voltage activated K(+)-current (IKv) was inhibited by correolide, large conductance (BK) Ca(2+)-activated K(+)-current (IKCa) by Penitrem A, and Ca(2+)-activated Cl(-)-current (IClCa) by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). Intravitreal injections (10µl) of DIDS (estimated intraocular concentration 10mM) increased flow by 22%, whereas the BK-blockers Penitrem A (1µM) and iberiotoxin (4µM), and the IKv-inhibitor correolide (40µM) all decreased resting flow by approximately 10%. Et1 (104nM) reduced flow by almost 65%. This effect was completely reversed by DIDS but was unaffected by Penitrem A, iberiotoxin or correolide.
Conclusions: These results suggest that Cl(-)-channels in retinal arteriolar smooth muscle limit resting blood flow and play an obligatory role in Et1 responses. K(+)-channel activity promotes basal flow but exerts little modifying effect on the Et1 response. Cl(-)-channels may be appropriate molecular targets in retinal pathologies characterised by increased Et1 activity and reduced blood flow.
Resumo:
Purpose: To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Methods: Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacological agents inhibiting Ca2+ sparks and oscillations and K+ channels. Subcellular Ca2+ signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Results: AA dilated pressurised retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. AA-induced dilation was associated with an inhibition of subcellular Ca2+ signals. Interventions known to block Ca2+ sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. AA accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous BK currents, but only at positive membrane potentials. Pharmacological inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. AA suppressed L-type Ca2+ currents. Conclusions: These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca2+ signalling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca2+ channel activity. AA actions on K+ currents are inconsistent with a model in which K+ channels contribute to the vasodilator effects of AA.