969 resultados para Hyperbolic Equation
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
Using Thomé's procedure, the asymptotic solutions of the Frieman and Book equation for the two-particle correlation in a plasma have been obtained in a complete form. The solution is interpreted in terms of the Lorentz distance. The exact expressions for the internal energy and pressure are evaluated and they are found to be a generalization of the result obtained earlier by others.
Resumo:
We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.
Resumo:
A simple, sufficiently accurate and efficient method for approximate solutions of the Falkner-Skan equation is proposed here for a wide range of the pressure gradient parameter. The proposed approximate solutions are obtained utilising a known solution of another differential equation.
Resumo:
A formal way of deriving fluctuation-correlation relations in dense sheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
The Cole-Hopf transformation has been generalized to generate a large class of nonlinear parabolic and hyperbolic equations which are exactly linearizable. These include model equations of exchange processes and turbulence. The methods to solve the corresponding linear equations have also been indicated.La transformation de Cole et de Hopf a été généralisée en vue d'engendrer une classe d'équations nonlinéaires paraboliques et hyperboliques qui peuvent être rendues linéaires de façon exacte. Elles comprennent des équations modèles de procédés d'échange et de turbulence. Les méthodes pour résoudre les équations linéaires correspondantes ont également été indiquées.
Resumo:
The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.