928 resultados para Host regeneration
Resumo:
Leaves from 120 canopy trees and 60 understory tree saplings growing in primary and secondary forests near Manaus, Brazil, were collected for determination of standing levels of herbivory (percent leaf area lost). Overall, levels of herbivory on leaves of central Amazonian trees were low. About one quarter of the leaves examined (n = 855) had no damage at all. In most other Neotropical sites studied the mean percentage of herbivory was found to vary between 5.7 and 13.1%, whereas in Manaus it was only 3.1%. The data presented here support the contention that levels of herbivore damage are positively related to soil fertility. No significant difference was found in herbivory levels between canopy trees and understory saplings. Also, there was no difference in damage between leaves from pioneer and late successional trees. Field assays of preference, however, revealed that leaves from pioneer trees are more palatable to leaf-cutting ants (Atta laevigata). This effect was dependent upon leaf age, being observed in mature leaves, but not in young leaves. The greater rate of leaf production in secondary forests may be a factor accounting for the greater abundance of leaf-cutting ants in secondary compared to primary forests.
Resumo:
[Excerpt] Bone tissue engineering is a very challenging and promising field, which handles with the limitations of bone regenerative capacity and the failure of current orthopedic implants [1]. This work describes the preparation and characterization of an injectable dextrin-based hydrogel (oDex) able to incorporate nanoparticles, cells, biomolecules or Bonelike~ granules [2]. (...)
Resumo:
Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.
Resumo:
Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).
Resumo:
In this study we investigated the relationship between tambaqui fish (Colossoma macropomumi Cuvier 1818) and parasites in two fish farms (L204S and L180N) in the state of Rondônia, Brazil, during a 1-year period. The objective of the study was to describe the relationships between parasites, hosts and the environment. From the 80 fish specimens collected, 100% were parasitized by at least one parasite species. Seven ectoparasites species were recorded, six of the class Monogenea: Anacanthorus spathulatusi, Mymarothecium spp. (Mymarothecium sp. 1, Mymarothecium sp. 2 and M. viatorum), Notozothecium sp. and Linguadactyloides brinkimanni, classified as dominants, and the copepod Perulernaea gamitanae, classified as subordinate. Despite their high prevalence, the parasites were not abundant. A. spathulatus presented positive and significant correlations between the abundance of parasitism and the standard length of the hosts in the two fish farms; Mymarothecium spp. showed significant correlations, negative in L180N, and positive in L204S; significant positive correlations were observed for Notozothecium sp. in L204S, and for L.brinkimanni in L180N. Young monogeneans were found; these parasites presented a negative correlation in L180N and a significant negative correlation in L204S. The results of the correlation between the relative condition factor (Kn) and the abundance of parasites were not significant for the recorded parasite species. Regarding the hepatosomatic relation (HSR) of fish and the abundance of parasites, Anacanthorus spathulatusi showed a significant negative correlation with the HSR in L180N, and a positive correlation in L204S. Mymarothecium spp. and Notozothecium sp. presented significant positive correlations in L204S. Considering the correlation of the fish splenosomatic relation (SSR) and the abundance of parasites, L. brinkimanni presented significant correlations, positive in L180N and negative in L204S. Despite 100% prevalence, the high water quality contributes to infracommunities with low parasite abundance and good levels of Kn, HSR and SSR, allowing good tambaqui development.
Resumo:
In this study we present a new record of a plant-animal interaction: the mutualistic relationship between the specialist plant-ant Myrcidris epicharis Ward, 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae). We observed more than 50 individuals of M. madida occupied by M. epicharis in islands and margins of the Juruena River, in Cotriguaçu, Mato Grosso, Brazil (Meridional Amazon). We discuss a possible distribution of this symbiotic interaction throughout all the riparian forest of the Amazon River basin and its consequence to coevolution of the system.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.
Resumo:
The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact.
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.
Resumo:
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Resumo:
v.1
Resumo:
v.2
Resumo:
v.3
Resumo:
v.4