953 resultados para Hipocampo ventral


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual abnormalities, both at the sensory input and the higher interpretive levels, have been associated with many of the symptoms of schizophrenia. Individuals with schizophrenia typically experience distortions of sensory perception, resulting in perceptual hallucinations and delusions that are related to the observed visual deficits. Disorganised speech, thinking and behaviour are commonly experienced by sufferers of the disorder, and have also been attributed to perceptual disturbances associated with anomalies in visual processing. Compounding these issues are marked deficits in cognitive functioning that are observed in approximately 80% of those with schizophrenia. Cognitive impairments associated with schizophrenia include: difficulty with concentration and memory (i.e. working, visual and verbal), an impaired ability to process complex information, response inhibition and deficits in speed of processing, visual and verbal learning. Deficits in sustained attention or vigilance, poor executive functioning such as poor reasoning, problem solving, and social cognition, are all influenced by impaired visual processing. These symptoms impact on the internal perceptual world of those with schizophrenia, and hamper their ability to navigate their external environment. Visual processing abnormalities in schizophrenia are likely to worsen personal, social and occupational functioning. Binocular rivalry provides a unique opportunity to investigate the processes involved in visual awareness and visual perception. Binocular rivalry is the alternation of perceptual images that occurs when conflicting visual stimuli are presented to each eye in the same retinal location. The observer perceives the opposing images in an alternating fashion, despite the sensory input to each eye remaining constant. Binocular rivalry tasks have been developed to investigate specific parts of the visual system. The research presented in this Thesis provides an explorative investigation into binocular rivalry in schizophrenia, using the method of Pettigrew and Miller (1998) and comparing individuals with schizophrenia to healthy controls. This method allows manipulations to the spatial and temporal frequency, luminance contrast and chromaticity of the visual stimuli. Manipulations to the rival stimuli affect the rate of binocular rivalry alternations and the time spent perceiving each image (dominance duration). Binocular rivalry rate and dominance durations provide useful measures to investigate aspects of visual neural processing that lead to the perceptual disturbances and cognitive dysfunction attributed to schizophrenia. However, despite this promise the binocular rivalry phenomenon has not been extensively explored in schizophrenia to date. Following a review of the literature, the research in this Thesis examined individual variation in binocular rivalry. The initial study (Chapter 2) explored the effect of systematically altering the properties of the stimuli (i.e. spatial and temporal frequency, luminance contrast and chromaticity) on binocular rivalry rate and dominance durations in healthy individuals (n=20). The findings showed that altering the stimuli with respect to temporal frequency and luminance contrast significantly affected rate. This is significant as processing of temporal frequency and luminance contrast have consistently been demonstrated to be abnormal in schizophrenia. The current research then explored binocular rivalry in schizophrenia. The primary research question was, "Are binocular rivalry rates and dominance durations recorded in participants with schizophrenia different to those of the controls?" In this second study binocular rivalry data that were collected using low- and highstrength binocular rivalry were compared to alternations recorded during a monocular rivalry task, the Necker Cube task to replicate and advance the work of Miller et al., (2003). Participants with schizophrenia (n=20) recorded fewer alternations (i.e. slower alternation rates) than control participants (n=20) on both binocular rivalry tasks, however no difference was observed between the groups on the Necker cube task. Magnocellular and parvocellular visual pathways, thought to be abnormal in schizophrenia, were also investigated in binocular rivalry. The binocular rivalry stimuli used in this third study (Chapter 4) were altered to bias the task for one of these two pathways. Participants with schizophrenia recorded slower binocular rivalry rates than controls in both binocular rivalry tasks. Using a ‘within subject design’, binocular rivalry data were compared to data collected from a backwardmasking task widely accepted to bias both these pathways. Based on these data, a model of binocular rivalry, based on the magnocellular and parvocellular pathways that contribute to the dorsal and ventral visual streams, was developed. Binocular rivalry rates were compared with performance on the Benton’s Judgment of Line Orientation task, in individuals with schizophrenia compared to healthy controls (Chapter 5). The Benton’s Judgment of Line Orientation task is widely accepted to be processed within the right cerebral hemisphere, making it an appropriate task to investigate the role of the cerebral hemispheres in binocular rivalry, and to investigate the inter-hemispheric switching hypothesis of binocular rivalry proposed by Pettigrew and Miller (1998, 2003). The data were suggestive of intra-hemispheric rather than an inter-hemispheric visual processing in binocular rivalry. Neurotransmitter involvement in binocular rivalry, backward masking and Judgment of Line Orientation in schizophrenia were investigated using a genetic indicator of dopamine receptor distribution and functioning; the presence of the Taq1 allele of the dopamine D2 receptor (DRD2) receptor gene. This final study (Chapter 6) explored whether the presence of the Taq1 allele of the DRD2 receptor gene, and thus, by inference the distribution of dopamine receptors and dopamine function, accounted for the large individual variation in binocular rivalry. The presence of the Taq1 allele was associated with slower binocular rivalry rates or poorer performance in the backward masking and Judgment of Line Orientation tasks seen in the group with schizophrenia. This Thesis has contributed to what is known about binocular rivalry in schizophrenia. Consistently slower binocular rivalry rates were observed in participants with schizophrenia, indicating abnormally-slow visual processing in this group. These data support previous studies reporting visual processing abnormalities in schizophrenia and suggest that a slow binocular rivalry rate is not a feature specific to bipolar disorder, but may be a feature of disorders with psychotic features generally. The contributions of the magnocellular or dorsal pathways and parvocellular or ventral pathways to binocular rivalry, and therefore to perceptual awareness, were investigated. The data presented supported the view that the magnocellular system initiates perceptual awareness of an image and the parvocellular system maintains the perception of the image, making it available to higher level processing occurring within the cortical hemispheres. Abnormal magnocellular and parvocellular processing may both contribute to perceptual disturbances that ultimately contribute to the cognitive dysfunction associated with schizophrenia. An alternative model of binocular rivalry based on these observations was proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After attending this presentation, attendees will gain awareness of: (1) the error and uncertainty associated with the application of the Suchey-Brooks (S-B) method of age estimation of the pubic symphysis to a contemporary Australian population; (2) the implications of sexual dimorphism and bilateral asymmetry of the pubic symphysis through preliminary geometric morphometric assessment; and (3) the value of three-dimensional (3D) autopsy data acquisition for creating forensic anthropological standards. This presentation will impact the forensic science community by demonstrating that, in the absence of demographically sound skeletal collections, post-mortem autopsy data provides an exciting platform for the construction of large contemporary ‘virtual osteological libraries’ for which forensic anthropological research can be conducted on Australian individuals. More specifically, this study assesses the applicability and accuracy of the S-B method to a contemporary adult population in Queensland, Australia, and using a geometric morphometric approach, provides an insight to the age-related degeneration of the pubic symphysis. Despite the prominent use of the Suchey-Brooks (1990) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations1-4. Australian forensic anthropology is constrained by a paucity of population specific standards due to a lack of repositories of documented skeletons. Consequently, in Australian casework proceedings, standards constructed from predominately American reference samples are applied to establish a biological profile. In the global era of terrorism and natural disasters, more specific population standards are required to improve the efficiency of medico-legal death investigation in Queensland. The sample comprises multi-slice computed tomography (MSCT) scans of the pubic symphysis (slice thickness: 0.5mm, overlap: 0.1mm) on 195 individuals of caucasian ethnicity aged 15-70 years. Volume rendering reconstruction of the symphyseal surface was conducted in Amira® (v.4.1) and quantitative analyses in Rapidform® XOS. The sample was divided into ten-year age sub-sets (eg. 15-24) with a final sub-set of 65-70 years. Error with respect to the method’s assigned means were analysed on the basis of bias (directionality of error), inaccuracy (magnitude of error) and percentage correct classification of left and right symphyseal surfaces. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone composition were quantified using novel automated engineering software capabilities. The results of this study demonstrated correct age classification utilizing the mean and standard deviations of each phase of the S-B method of 80.02% and 86.18% in Australian males and females, respectively. Application of the S-B method resulted in positive biases and mean inaccuracies of 7.24 (±6.56) years for individuals less than 55 years of age, compared to negative biases and mean inaccuracies of 5.89 (±3.90) years for individuals greater than 55 years of age. Statistically significant differences between chronological and S-B mean age were demonstrated in 83.33% and 50% of the six age subsets in males and females, respectively. Asymmetry of the pubic symphysis was a frequent phenomenon with 53.33% of the Queensland population exhibiting statistically significant (χ2 - p<0.01) differential phase classification of left and right surfaces of the same individual. Directionality was found in bilateral asymmetry, with the right symphyseal faces being slightly older on average and providing more accurate estimates using the S-B method5. Morphometric analysis verified these findings, with the left surface exhibiting significantly greater circumference and surface area than the right (p<0.05). Morphometric analysis demonstrated an increase in maximum height and width of the surface with age, with most significant changes (p<0.05) occurring between the 25-34 and 55-64 year age subsets. These differences may be attributed to hormonal components linked to menopause in females and a reduction in testosterone in males. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal surfaces of the pubic symphysis. This study recommends that the S-B method be applied with caution in medico-legal death investigations of unknown skeletal remains in Queensland. Age estimation will always be accompanied by error; therefore this study demonstrates the potential for quantitative morphometric modelling of age related changes of the pubic symphysis as a tool for methodological refinement, providing a rigor and robust assessment to remove the subjectivity associated with current pelvic aging methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction–diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Varenicline, a neuronal nicotinic acetylcholine receptor (nAChR) modulator, decreases ethanol consumption in rodents and humans. The proposed mechanism of action for varenicline to reduce ethanol consumption has been through modulation of dopamine (DA) release in the nucleus accumbens (NAc) via α4*-containing nAChRs in the ventral tegmental area (VTA). However, presynaptic nAChRs on dopaminergic terminals in the NAc have been shown to directly modulate dopaminergic signalling independently of neuronal activity from the VTA. In this study, we determined whether nAChRs in the NAc play a role in varenicline’s effects on ethanol consumption. EXPERIMENTAL APPROACH Rats were trained to consume ethanol using the intermittent-access two-bottle choice protocol for 10 weeks. Ethanol intake was measured after varenicline or vehicle was microinfused into the NAc (core, shell or core-shell border) or the VTA (anterior or posterior). The effect of varenicline treatment on DA release in the NAc was measured using both in vivo microdialysis and in vitro fast-scan cyclic voltammetry (FSCV). KEY RESULTS Microinfusion of varenicline into the NAc core and core-shell border, but not into the NAc shell or VTA, reduced ethanol intake following long-term ethanol consumption. During microdialysis, a significant enhancement in accumbal DA release occurred following systemic administration of varenicline and FSCV showed that varenicline also altered the evoked release of DA in the NAc. CONCLUSION AND IMPLICATIONS Following long-term ethanol consumption, varenicline in the NAc reduces ethanol intake, suggesting that presynaptic nAChRs in the NAc are important for mediating varenicline’s effects on ethanol consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the ‘anti-reward’ effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological and physiological characteristics of neurons located in the dorsolateral and two ventral subdivisions of the lateral amygdala (LA) have been compared in order to differentiate their roles in the formation and storage of fear memories (Alphs et al, SfN abs 623.1, 2003). Briefly, in these populations, significant differences are observed in input resistance, membrane time constant, firing frequency, dendritic tortuosity, numbers of primary dendrites, dendritic segments and dendritic nodes...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults.Weexamined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the comparison of colour and achromatic sensitivity is unknown, however, and so a secondary aim was to investigate whether equivalent fMRI responses of each cortical area are predicted by stimulus contrast matched in multiples of detection threshold that approximately equates for visibility, or direct (cone) contrast matches in which psychophysical sensitivity is uncorrected. We found that the fMRI response across the two colour and achromatic pathways is not well predicted by threshold-scaled stimuli (perceptual visibility) but is better predicted by cone contrast, particularly for area V1. Our results show that the early visual areas (V1, V2, V3, VP and hV4) all have robust responses to colour. No area showed an overall colour preference, however, until anterior to V4 where we found a ventral occipital region that has a significant preference for chromatic stimuli, indicating a functional distinction from earlier areas. We found that all of these areas have a surprisingly strong response to S-cone stimuli, at least as great as the L/M response, suggesting a relative enhancement of the S-cone cortical signal. We also identified two areas (V3A and hMT+) with a significant preference for achromatic over chromatic stimuli, indicating a functional grouping into a dorsal pathway with a strong magnocellular input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.