933 resultados para Highway engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of automation (specifically Global Positioning Systems (GPS)) and Information and Communications Technology (ICT) through the creation of a Total Jobsite Management Tool (TJMT) in construction contractor companies can revolutionize the way contractors do business. The key to this integration is the collection and processing of real-time GPS data that is produced on the jobsite for use in project management applications. This research study established the need for an effective planning and implementation framework to assist construction contractor companies in navigating the terrain of GPS and ICT use. An Implementation Framework was developed using the Action Research approach. The framework consists of three components, as follows: (i) ICT Infrastructure Model, (ii) Organizational Restructuring Model, and (iii) Cost/Benefit Analysis. The conceptual ICT infrastructure model was developed for the purpose of showing decision makers within highway construction companies how to collect, process, and use GPS data for project management applications. The organizational restructuring model was developed to assist companies in the analysis and redesign of business processes, data flows, core job responsibilities, and their organizational structure in order to obtain the maximum benefit at the least cost in implementing GPS as a TJMT. A cost-benefit analysis which identifies and quantifies the cost and benefits (both direct and indirect) was performed in the study to clearly demonstrate the advantages of using GPS as a TJMT. Finally, the study revealed that in order to successfully implement a program to utilize GPS data as a TJMT, it is important for construction companies to understand the various implementation and transitioning issues that arise when implementing this new technology and business strategy. In the study, Factors for Success were identified and ranked to allow a construction company to understand the factors that may contribute to or detract from the prospect for success during implementation. The Implementation Framework developed as a result of this study will serve to guide highway construction companies in the successful integration of GPS and ICT technologies for use as a TJMT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safety of workers in nighttime roadway work zones has become a major concern for state transportation agencies due to the increase in the number of work zone fatalities. During the last decade, several studies have focused on the improvement of safety in nighttime roadway work zones; but the element that is still missing is a set of tools for translating the research results into practice. This paper discusses: 1) the importance of translating the research results related to the safety of workers and safety planning of nighttime work zones into practice, and 2) examples of tools that can be used for translating the results of such studies into practice. A tool that can propose safety recommendations in nighttime work zones and a web-based safety training tool for workers are presented in this paper. The tools were created as a component of a five-year research study on the assessment of the safety of nighttime roadway construction. The objectives of both tools are explained as well as their functionalities (i.e., what the tools can do for the users); their components (e.g., knowledge base, database, and interfaces); and their structures (i.e., how the components of the tools are organized to meet the objectives). Evaluations by the proposed users of each tool are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Highway Safety Manual (HSM) estimates roadway safety performance based on predictive models that were calibrated using national data. Calibration factors are then used to adjust these predictive models to local conditions for local applications. The HSM recommends that local calibration factors be estimated using 30 to 50 randomly selected sites that experienced at least a total of 100 crashes per year. It also recommends that the factors be updated every two to three years, preferably on an annual basis. However, these recommendations are primarily based on expert opinions rather than data-driven research findings. Furthermore, most agencies do not have data for many of the input variables recommended in the HSM. This dissertation is aimed at determining the best way to meet three major data needs affecting the estimation of calibration factors: (1) the required minimum sample sizes for different roadway facilities, (2) the required frequency for calibration factor updates, and (3) the influential variables affecting calibration factors. In this dissertation, statewide segment and intersection data were first collected for most of the HSM recommended calibration variables using a Google Maps application. In addition, eight years (2005-2012) of traffic and crash data were retrieved from existing databases from the Florida Department of Transportation. With these data, the effect of sample size criterion on calibration factor estimates was first studied using a sensitivity analysis. The results showed that the minimum sample sizes not only vary across different roadway facilities, but they are also significantly higher than those recommended in the HSM. In addition, results from paired sample t-tests showed that calibration factors in Florida need to be updated annually. To identify influential variables affecting the calibration factors for roadway segments, the variables were prioritized by combining the results from three different methods: negative binomial regression, random forests, and boosted regression trees. Only a few variables were found to explain most of the variation in the crash data. Traffic volume was consistently found to be the most influential. In addition, roadside object density, major and minor commercial driveway densities, and minor residential driveway density were also identified as influential variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sixth in a series, this bulletin further compiles the reports on completed research done for the Iowa State Highway Research Board under its Project HR-1, The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, has been conducted by the Iowa Engineering Experiment Station at Iowa State University under its Project 283-S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the fourth publication in a series of compilations of the reports on research completed for the Iowa State Highway Commission. This research was done for the Iowa State Highway Research Board Project HR-1. The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction. The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the fifth publication in a series of compilations of the reports on research completed for the Iowa State Highway Commission. This research was done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction." The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission. The principal objectives of the project may be summed up as follows: 1. To determine by means of both field and laboratory studies the areal and stratigraphic variation in the physical and chemical properties of the loess and glacial till materials of Iowa. 2. To develop new equipment and methods for evaluating physical and chemical properties of soil where needed. 3. To correlate fundamental soil properties with the performance of soils in the highway structure. 4. To develop a scientific approach to the problem of soil stabilization based on the relationships between the properties of the soils and those of the admixtures. 5. To determine the manner in which the loess and glacial till materials of Iowa can be processed for optimum performance as highway embankments, sub-grades, base courses, and surface courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recycled materials replacing part of virgin materials in highway applications has shown great benefits to the society and environment. Beneficial use of recycled materials can save landfill places, sparse natural resources, and energy consumed in milling and hauling virgin materials. Low price of recycled materials is favorable to cost-saving in pavement projects. Considering the availability of recycled materials in the State of Maryland (MD), four abundant recycled materials, recycled concrete aggregate (RCA), recycled asphalt pavement (RAP), foundry sand (FS), and dredged materials (DM), were studied. A survey was conducted to collect the information of current usage of the four recycled materials in States’ Department of Transportation (DOTs). Based on literature review, mechanical and environmental properties, recommendations, and suggested test standards were investigated separately for the four recycled materials in different applications. Constrains in using these materials were further studied in order to provide recommendations for the development of related MD specifications. To measure social and environmental benefits from using recycled materials, life-cycle assessment was carried out with life-cycle analysis (LCA) program, PaLATE, and green highway rating system, BEST-in-Highway. The survey results indicated the wide use of RAP and RCA in hot mix asphalt (HMA) and graded aggregate base (GAB) respectively, while FS and DM are less used in field. Environmental concerns are less, but the possibly low quality and some adverse mechanical characteristics may hinder the widely use of these recycled materials. Technical documents and current specifications provided by State DOTs are good references to the usage of these materials in MD. Literature review showed consistent results with the survey. Studies from experimental research or site tests showed satisfactory performance of these materials in highway applications, when the substitution rate, gradation, temperature, moisture, or usage of additives, etc. meet some requirements. The results from LCA revealed significant cost savings in using recycled materials. Energy and water consumption, gas emission, and hazardous waste generation generally showed reductions to some degree. Use of new recycled technologies will contribute to more sustainable highways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is the analysis and the study of the various access techniques for vehicular communications, in particular of the C-V2X and WAVE protocols. The simulator used to study the performance of the two protocols is called LTEV2Vsim and was developed by the CNI IEIIT for the study of V2V (Vehicle-to-Vehicle) communications. The changes I made allowed me to study the I2V (Infrastructure-to-Vehicle) scenario in highway areas and, with the results obtained, I made a comparison between the two protocols in the case of high vehicular density and low vehicular density, putting in relation to the PRR (packet reception ratio) and the cell size (RAW, awareness range). The final comparison allows to fully understand the possible performances of the two protocols and highlights the need for a protocol that allows to reach the minimum necessary requirements.