881 resultados para High mechanical strength


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mass reduction coupled with the mechanical performance in service has been the goal of many projects related to the transport area, considering the advantages that mass reduction can bring. However, make a simple material substitution without design a new geometry to corroborate for the best component performance, often makes the replacement unviable. In this study, it was investigated the advantages of replacing the prototype BAJA SAE front suspension lower arm of Equipe Piratas do Vale de BAJA SAE - Universidade Paulista, Campus Guaratinguetá, actually produced with steel, for a new component made of carbon fiber composite. The new geometry has been developed to provide the best possible performance for this component and your easy manufacturing. The study was done using the 3D modeling tools and computer simulations via finite element method. The first stage of this work consisted on calculation of the estimated maximum contact force tire / soil in a prototype landing after jump at one meter high, drop test in the laboratory with the current vehicle, current front suspension lower arm 3D modeling, finite element simulation and analysis of critical regions. After all current component analysis, a new geometry for the part in study was designed and simulated in order to reduce the component mass and provide a technological innovation using composite materials. With this work it was possible to obtain a theoretical component mass reduction of 25,15% maintaining the mechanical strength necessary for the appropriated component performance when incited

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calcific aortic valve disease (CAVD) is a chronic disorder characterized by an abnormal mineralization of the leaflets, which is accelerated in bicuspid aortic valve (BAV). It is suspected that mechanical strain may promote/enhance mineralization of the aortic valve. However, the effect of mechanical strain and the involved pathways during mineralization of the aortic valve remains largely unknown. Valve interstitial cells (VICs) were isolated and studied under strain conditions. Human bicuspid aortic valves were examined as a model relevant to increase mechanical strain. Cyclic strain increased mineralization of VICs by several-fold. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses revealed that mechanical strain promoted the formation of mineralized spheroid microparticles, which coalesced into larger structure at the surface of apoptotic VICs. Apoptosis and mineralization were closely associated with expression of ENPP1. Inhibition of ENPP1 greatly reduced mineralization of VIC cultures. Through several lines of evidence we showed that mechanical strain promoted the export of ENPP1-containing vesicles to the plasma membrane through a RhoA/ROCK pathway. Studies conducted in human BAV revealed the presence of spheroid mineralized structures along with the expression of ENPP1 in areas of high mechanical strain. Mechanical strain promotes the production and accumulation of spheroid mineralized microparticles by VICs, which may represent one important underlying mechanism involved in aortic valve mineralization. RhoA/ROCK-mediated export of ENPP1 to the plasma membrane promotes strain-induced mineralization of VICs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum alloys have shown great potential for the automotive industry, especially aluminum alloys 6xxx series. This category has good mechanical strength and excellent corrosion resistance, important for the areas of construction and transport. The automotive industry has always shown great interest in the study of fatigue behavior, because structural components are subjected to cyclic and vibration loads, generating cracks and fracturing. The mechanical response depends on the material properties, applications, surface condition and microstructure. In this work was study the fatigue behavior of high cycle of machined bodies (not polished) and the effect of roughness on the fatigue life for three aluminum alloys of 6xxx series: AA6005, AA6351 and AA606, all in the T6 condition . S / N curves were made from fatigue tests in rotating bending (R = -1). The influence of roughness was studied by measuring the roughness of each specimen. Was compare the fatigue behavior of polished specimen and not polished specimens. The fractured surfaces of samples were observed by MEV, and it was observed that most of nucleation sites for fatigue crack is initiated below the surface

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This systematic review aimed to evaluate if the internal connection is more efficient than the external connection and its associated influencing factors. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Is internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? An electronic search of the MEDLINE and the Web of Knowledge databases was performed for relevant studies published in English up to November 2013 by two independent reviewers. The keywords used in the search included a combination of dental implant and internal connection or Morse connection or external connection. Selected studies were randomized clinical trials, prospective or retrospective studies, and in vitro studies with a clear aim of investigating the internal and/or external implant connection use. From an initial screening yield of 674 articles, 64 potentially relevant articles were selected after an evaluation of their titles and abstracts. Full texts of these articles were obtained with 29 articles fulfilling the inclusion criteria. Morse taper connection has the best sealing ability. Concerning crestal bone loss, internal connections presented better results than external connections. The limitation of the present study was the absence of randomized clinical trials that investigated if the internal connection was more efficient than the external connection. The external and internal connections have different mechanical, biological, and esthetical characteristics. Besides all systems that show proper success rates and effectiveness, crestal bone level maintenance is more important around internal connections than external connections. The Morse taper connection seems to be more efficient concerning biological aspects, allowing lower bacterial leakage and bone loss in single implants, including aesthetic regions. Additionally, this connection type can be successfully indicated for fixed partial prostheses and overdenture planning, since it exhibits high mechanical stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cure rates of youth with Acute Lymphoblastic Leukemia (ALL) have increased in the past decades, but survivor's quality of life and physical fitness has become a growing concern. Although previous reports showed that resistance training is feasible and effective, we hypothesized that a more intense exercise program would also be feasible, but more beneficial than low- to moderate-intensity training programs. We aimed to examine the effects of an exercise program combining high-intensity resistance exercises and moderate-intensity aerobic exercises in young patients undergoing treatment for ALL. A quasi-experimental study was conducted. The patients (n = 6; 5-16 years of age) underwent a 12-week intra-hospital training program involving high-intensity strength exercises and aerobic exercise at 70% of the peak oxygen consumption. At baseline and after 12 weeks, we assessed sub-maximal strength (10 repetition-maximum), quality of life and possible adverse effects. A significant improvement was observed in the sub maximal strength for bench press (71%), lat pull down (50%), leg press (73%) and leg extension (64%) as a result of the training (p < 0.01). The parents' evaluations of their children's quality of life revealed an improvement in fatigue and general quality of life, but the children's self-reported quality of life was not changed. No adverse effects occurred. A 12-week in-hospital training program including high-intensity resistance exercises promotes marked strength improvements in patients during the maintenance phase of the treatment for Acute Lymphoblastic Leukemia without side-effects. Parents' evaluations of their children revealed an improvement in the quality of life.