907 resultados para High Lift Systems Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a multi-language framework to FPGA hardware development which aims to satisfy the dual requirement of high-level hardware design and efficient hardware implementation. The central idea of this framework is the integration of different hardware languages in a way that harnesses the best features of each language. This is illustrated in this paper by the integration of two hardware languages in the form of HIDE: a structured hardware language which provides more abstract and elegant hardware descriptions and compositions than are possible in traditional hardware description languages such as VHDL or Verilog, and Handel-C: an ANSI C-like hardware language which allows software and hardware engineers alike to target FPGAs from high-level algorithmic descriptions. On the one hand, HIDE has proven to be very successful in the description and generation of highly optimised parameterisable FPGA circuits from geometric descriptions. On the other hand, Handel-C has also proven to be very successful in the rapid design and prototyping of FPGA circuits from algorithmic application descriptions. The proposed integrated framework hence harnesses HIDE for the generation of highly optimised circuits for regular parts of algorithms, while Handel-C is used as a top-level design language from which HIDE functionality is dynamically invoked. The overall message of this paper posits that there need not be an exclusive choice between different hardware design flows. Rather, an integrated framework where different design flows can seamlessly interoperate should be adopted. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware languages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design of a single chip adaptive beamformer which contains 5 million transistors and can perform 50 GigaFlops. The core processor of the adaptive beamformer is a QR-array processor implemented on a fully efficient linear systolic architecture. The paper highlights a number of rapid design techniques that have been used to realize the design. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilization of a library of parameterizable silicon intellectual property (IP) cores, to rapidly develop the circuit layouts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Modern business practices in engineering are increasingly turning to post manufacture service provision in an attempt to generate additional revenue streams and ensure commercial sustainability. Maintainability has always been a consideration during the design process but in the past it has been generally considered to be of tertiary importance behind manufacturability and primary product function in terms of design priorities. The need to draw whole life considerations into concurrent engineering (CE) practice has encouraged companies to address issues such as maintenance, earlier in the design process giving equal importance to all aspects of the product lifecycle. The consideration of design for maintainability (DFM) early in the design process has the potential to significantly reduce maintenance costs, and improve overall running efficiencies as well as safety levels. However a lack of simulation tools still hinders the adaptation of CE to include practical elements of design and therefore further research is required to develop methods by which ‘hands on’ activities such as maintenance can be fully assessed and optimised as concepts develop. Virtual Reality (VR) has the potential to address this issue but the application of these traditionally high cost systems can require complex infrastructure and their use has typically focused on aesthetic aspects of mature designs. This paper examines the application of cost effective VR technology to the rapid assessment of aircraft interior inspection during conceptual design. It focuses on the integration of VR hardware with a typical desktop engineering system and examines the challenges with data transfer, graphics quality and the development of practical user functions within the VR environment. Conclusions drawn to date indicate that the system has the potential to improve maintenance planning through the provision of a usable environment for inspection which is available as soon as preliminary structural models are generated as part of the conceptual design process. Challenges still exist in the efficient transfer of data between the CAD and VR environments as well as the quantification of any benefits that result from the proposed approach. The result of this research will help to improve product maintainability, reduce product development cycle times and lower maintenance costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical transceivers have hardware impairments that create distortions which degrade the performance of communication systems. The vast majority of technical contributions in the area of relaying neglect hardware impairments and, thus, assume ideal hardware. Such approximations make sense in low-rate systems, but can lead to very misleading results when analyzing future high-rate systems. This paper quantifies the impact of hardware impairments on dual-hop relaying, for both amplify-and-forward and decode-and-forward protocols. The outage probability (OP) in these practical scenarios is a function of the effective end-to-end signal-to-noise-and-distortion ratio (SNDR). This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination. A similar analysis for the ergodic capacity is also pursued, resulting in new upper bounds. We assume that both hops are subject to independent but non-identically distributed Nakagami-m fading. This paper validates that the performance loss is small at low rates, but otherwise can be very substantial. In particular, it is proved that for high signal-to-noise ratio (SNR), the end-to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments. This stands in contrast to the ideal hardware case in which the end-to-end SNDR grows without bound in the high-SNR regime. Finally, we provide fundamental design guidelines for selecting hardware that satisfies the requirements of a practical relaying system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully Homomorphic Encryption (FHE) is a recently developed cryptographic technique which allows computations on encrypted data. There are many interesting applications for this encryption method, especially within cloud computing. However, the computational complexity is such that it is not yet practical for real-time applications. This work proposes optimised hardware architectures of the encryption step of an integer-based FHE scheme with the aim of improving its practicality. A low-area design and a high-speed parallel design are proposed and implemented on a Xilinx Virtex-7 FPGA, targeting the available DSP slices, which offer high-speed multiplication and accumulation. Both use the Comba multiplication scheduling method to manage the large multiplications required with uneven sized multiplicands and to minimise the number of read and write operations to RAM. Results show that speed up factors of 3.6 and 10.4 can be achieved for the encryption step with medium-sized security parameters for the low-area and parallel designs respectively, compared to the benchmark software implementation on an Intel Core2 Duo E8400 platform running at 3 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organisation that had developed a large information system wanted to embark on a programme that would involve large-scale evolution of it. As a precursor to this, it was decided to create a comprehensive architectural description to capture and understand the system’s design. This undertaking faced a number of challenges, including a low general awareness of software modelling and software architecture practices. The approach taken by the software architects tasked with this project included the definition of a simple, very specific, architecture description language. This paper reports our experience of the project and a simple ADL that we created as part of it. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

So far, in the bivariate set up, the analysis of lifetime (failure time) data with multiple causes of failure is done by treating each cause of failure separately. with failures from other causes considered as independent censoring. This approach is unrealistic in many situations. For example, in the analysis of mortality data on married couples one would be interested to compare the hazards for the same cause of death as well as to check whether death due to one cause is more important for the partners’ risk of death from other causes. In reliability analysis. one often has systems with more than one component and many systems. subsystems and components have more than one cause of failure. Design of high-reliability systems generally requires that the individual system components have extremely high reliability even after long periods of time. Knowledge of the failure behaviour of a component can lead to savings in its cost of production and maintenance and. in some cases, to the preservation of human life. For the purpose of improving reliability. it is necessary to identify the cause of failure down to the component level. By treating each cause of failure separately with failures from other causes considered as independent censoring, the analysis of lifetime data would be incomplete. Motivated by this. we introduce a new approach for the analysis of bivariate competing risk data using the bivariate vector hazard rate of Johnson and Kotz (1975).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. It is shown that direct application of the basic particle filter (i.e., importance sampling using the prior as the importance density) does not work in high-dimensional systems, but several variants are shown to have potential. Approximations to the full problem that try to keep some aspects of the particle filter beyond the Gaussian approximation are also presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise is viewed as a complex system which can be engineered to accomplish organisational objectives. Systems analysis and modelling will enable to the planning and development of the enterprise and IT systems. Many IT systems design methods focus on functional and non-functional requirements of the IT systems. Most methods are normally capable of one but leave out other aspects. Analysing and modelling of both business and IT systems may often have to call on techniques from various suites of methods which may be placed on different philosophic and methodological underpinnings. Coherence and consistency between the analyses are hard to ensure. This paper introduces the Problem Articulation Method (PAM) which facilitates the design of an enterprise system infrastructure on which an IT system is built. Outcomes of this analysis represent requirements which can be further used for planning and designing a technical system. As a case study, a finance system, Agresso, for e-procurement has been used in this paper to illustrate the applicability of PAM in modelling complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods and techniques used in designing organisational performance measurement systems do not consider the multiple aspects of business processes or the semantics of data generated during the lifecycle of a product. In this paper, we propose an organisational performance measurement systems design model that is based on the semantics of an organisation, business process and products lifecycle. Organisational performance measurement is examined from academic and practice disciplines. The multi-discipline approach is used as a research tool to explore the weaknesses of current models that are used to design organisational performance measurement systems. This helped in identifying the gaps in research and practice concerning the issues and challenges in designing information systems for measuring the performance of an organisation. The knowledge sources investigated include on-going and completed research project reports; scientific and management literature; and practitioners’ magazines.