994 resultados para Heterotrophic Nitrification
Resumo:
Bio-floc shrimp culture systems have been investigated in an attempt to optimize water use and prevent the discharge of effluent into the environment. The importance of microalgae in maintaining water quality and nutrition of the shrimp is well known in conventional systems; however, its maintenance amid bio-flocs and its role in the shrimp performance in this system are still poorly understood. The aim of this study was to evaluate the contribution of diatoms in the performance of Litopenaeus vannamei reared during the nursery phase in intensive system with minimal water exchange. Shrimp (0.31 ± 0.10 g) were reared among diatoms, bio-flocs and the combination of the two forming the mixture medium. The survival of shrimp was high in all treatments (90–97%). However, the shrimp reared among diatoms showed higher weight gain (P\0.05) and feed conversion ratio significantly more efficient, reaching a value of 0.47. The results indicate the importance of diatoms in bio-floc culture systems and points out to future research in an attempt to maintain a constant presence of these microalgae in culture medium without requiring successive inoculations.
Resumo:
Several important biomolecules are available into anaerobically digested effluents that were obtained from the biodiesel production process using heterotrophically grown microalga Chlorella protothecoides. Defatted microalgae residues and crude glycerol may undergo anaerobic digestion, separately and in admixture, providing methane/hydrogen and a digestate exploitable for agriculture applications. Furthermore, industrial interesting bioactive compounds such as polyphenols provided with antioxidant activity can be obtained. Anaerobic process offers a promising chance and can be advantageously combined with algae lipid-extraction techniques in order to make it more sustainable.
Resumo:
Heterotrophic feeding has an important role in the processes of growth and reproduction of mixotrophic corals. The soft coral Sarcophyton cf. glaucum is a good candidate for aquaculture due to its economic interest for the marine aquarium trade and for the bioprospection of marine natural products. The lack of information on heterotrophic feeding of this species with preserved microalgae conducted to development of this work. The present study aimed to evaluate the effect of the conservation processes of microalgae in its suitability as heterotrophic feeding for the mixotrophic coral S. cf. glaucum. Additionally, we aimed to identify the most suitable freeze-dried microalgae species and cell density to be employed in the culture of this mixotrophic coral species. Two experiments were performed: in the first experiment the microalgae Nannochloropsis oculata was supplied to coral fragments in three different preservation forms (live paste, frozen and freeze-dried) at the concentration of 106 cell mL-1; in the second experiment three different microalgae species (Nannochloropsis oculata, Isochrysis galbana and Phaeodactylum tricornutum) were tested in two different amounts: 7.33 mg L-1 (corresponding to the concentration of 106 cell mL-1 of Nannochloropsis oculata) and 3.66 mg L-1. Growth rate, survival, organic weight and photobiology of coral fragments, as well as water quality in culture tanks, were evaluated in both experiments. Preserved forms of microalgae did not demonstrated differences in growth rate, organic weight and survival rate of coral fragments, but affected water quality. Freeze-dried microalgae seems to be a good feed supply for coral aquaculture, as it has the best results and it has the higher shell-life time and the lower associated costs. Between the species evaluated in second experiment, Isochrysis galbana promoted higher specific growth rate and higher percentage of organic weight in the coral fragments; additionally the culture tanks supplied with this microalgae species also presented a better water quality in the end of the experiment.
Resumo:
The marine dinoflagellate genus Dinophysis includes species that are the causative agents of diarrhetic shellfish poisoning (DSP). Recent findings indicate that some Dinophysis species are mixotrophic, i.e. capable of both autotrophic and heterotrophic nutrition. We investigated inorganic (and organic) carbon uptake by several species of Dinophysis in the Light and dark using the 'single-cell C-14 method', and compared uptake rates with those of photosynthetic Ceratium species and heterotrophic dinoflagellates in the genus Protoperidinium. Experiments were conducted with water from the Gullmar Fjord and from the Koster Strait (Swedish west coast). Nutrient-enriched phytoplankton from surface water samples were concentrated (20 to 70 mu m) and incubated at in situ temperature under artificial light conditions with high concentrations of inorganic C-14 (1 mu Ci ml(-1)). Individual cells of each desired species were manually isolated under a microscope and transferred to scintillation vials. C. tripes showed net C-14 uptake only during light periods, whereas both C. lineatum and C. furca showed C-14 uptake in the Light as well as uptake (and sometimes losses) in the dark. Dinophysis species had similar carbon fixation rates in Light compared to Ceratium species. For D. acuminata and D. norvegica, net carbon uptake occurred in both Light and dark periods. D. acuta showed a loss of carbon in the dark in one experiment, but in another, dark C uptake was significantly higher than uptake in Light. When exposed to Light, C. furca, D. norvegica and D. acuta had high specific carbon uptake rates. Growth rates for the different species were calculated from C-14 uptake by the cells during the first hours of incubation in light. D. acuminata and D. norvegica had similar maximum growth rates, 0.59 and 0.63 d(-1) (mu); the maximum growth rate of D. acuta was lower (0.41 d(-1)). The positive dark carbon uptake by Dinophysis may suggest a mixotrophic mode of nutrition. In one experiment, both D. norvegica and D. acuta showed a significantly higher carbon uptake in a dark bottle than in a Light bottle, which would be consistent with uptake of C-14-labeled organic matter by D. norvegica and D. acuta. Demonstration of direct uptake of dissolved and particulate organic matter would provide conclusive evidence of mixotrophy and this will require the development of new protocols for measuring organic matter uptake applicable to Dinophysis in the natural assemblages.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Microbiana, 2016.
Resumo:
Antimicrobial resistance of marine heterotrophic bacteria to different antimicrobials agents were evaluated in seawater, dry and wet sands from three marine recreational beaches with different pollution levels. In all studied beaches, the greatest frequencies of resistance were found in relation to penicillin. on Gonzaguinha, the most polluted beach, 72.3% of all isolated strains showed simple resistance, whilst 8.33% had multiple resistance. The values found on Ilha Porchat beach, were 70.8% and 6.9% for simple and multiple resistances, respectively. on GuaraA(0), the less polluted beach, only 35.3% of isolated strains had simple resistance. Multiple resistance was not observed. While samples from Gonzaguinha and Ilha Porchat beach showed isolated strains resistant to seven and six different antimicrobial agents, respectively, samples from GuaraA(0) beach were resistant only to penicillin and erytromicin. The positive correlations obtained between the degree of seawater contamination and frequency and variability of bacterial resistance indicate that polluted marine recreational waters and sands are sources of resistant bacteria contributing thus, to the dissemination of bacterial resistance.
Resumo:
Biochemical processes by chemoautotrophs such as nitrifiers and sulfide and iron oxidizers are used extensively in wastewater treatment. The research described in this dissertation involved the study of two selected biological processes utilized in wastewater treatment mediated by chemoautotrophic bacteria: nitrification (biological removal of ammonia and nitrogen) and hydrogen sulfide (H2S) removal from odorous air using biofiltration. A municipal wastewater treatment plant (WWTP) receiving industrial dyeing discharge containing the azo dye, acid black 1 (AB1) failed to meet discharge limits, especially during the winter. Dyeing discharge mixed with domestic sewage was fed to sequencing batch reactors at 22oC and 7oC. Complete nitrification failure occurred at 7oC with more rapid nitrification failure as the dye concentration increased; slight nitrification inhibition occurred at 22oC. Dye-bearing wastewater reduced chemical oxygen demand (COD) removal at 7oC and 22oC, increased i effluent total suspended solids (TSS) at 7oC, and reduced activated sludge quality at 7oC. Decreasing AB1 loading resulted in partial nitrification recovery. Eliminating the dye-bearing discharge to the full-scale WWTP led to improved performance bringing the WWTP into regulatory compliance. BiofilterTM, a dynamic model describing the biofiltration processes for hydrogen sulfide removal from odorous air emissions, was calibrated and validated using pilot- and full-scale biofilter data. In addition, the model predicted the trend of the measured data under field conditions of changing input concentration and low effluent concentrations. The model demonstrated that increasing gas residence time and temperature and decreasing influent concentration decreases effluent concentration. Model simulations also showed that longer residence times are required to treat loading spikes. BiofilterTM was also used in the preliminary design of a full-scale biofilter for the removal of H2S from odorous air. Model simulations illustrated that plots of effluent concentration as a function of residence time or bed area were useful to characterize and design biofilters. Also, decreasing temperature significantly increased the effluent concentration. Model simulations showed that at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter.
Resumo:
Yacon, Smallanthus sonchifolius, an Andean species. is a rich source of dictetíc oligofructans with low glucose content. proteins and phenolic compounds. These constituents have shown efficacy in the prevention of diet-related ehronic diseases, including gastroin-testinal disorders and diabetes |1,2|. Yacon is part of a research program at the National Center for Natural Products Research (NCNPR) and University of Mississippi Field Station to develop new alternative root crops for Mississippi while attempting to im-prove the diet of low incorne families. Yacon can be easily propa-gated by cultings. Virus and nematode infections have been re-ported on plants propagated by cuttings in Brazil. a country that hás adopted Yacon as specialty crop [3|. We have developed two culture systems. autotrophic and heterotrophic, to produce healthy plants. Herem we describe the presence of endophytic bactéria m micropropagated Yacon. In auxin free media, new roots were induced. Overa 15day period. the average root mduction per expiam was 5.45 to 8.75 under autotrophic and heterotrophic cul-tures, respectively. Root lenglh vaned between 3 and 60mrn. The presence of root hairs and lateral roots was noticed only in auto-trophic condilions. These beneficiai bactéria were identified and chemically ctiaracterized. Acknowledgement: This research work was partially supported by the USDA/ARS Cooperative Research Agreement No. 58-6408-2-009. Referentes; |1) Terada S. et ai. (2006] Yakugaku Zasshi 126(8): 665-669. (2| Valentová K. Ulri-chová j. (2003) Biomedical Papers 147: 119-130. [3| Mogor C. et ai, (2003) Acta Horticulturea 597: 311 -313.
Resumo:
The objective of this paper was to assess bacteriological quality of drinking water in a peri-urban area located in the Metropolitan Region of São Paulo, Brazil. A total of 89 water samples were collected from community plastic tanks and 177 water samples from wells were collected bimonthly, from September 2007 to November 2008, for evaluating bacteriological parameters including: Escherichia coli, Enterococcus and heterotrophic plate count (HPC). Clostridium perfringens was investigated in a subsample (40 samples from community plastic tank and 40 from wells). E. coli was present in 5 (5.6%) samples from community plastic tanks (2.0 - 5.1x10(4) MPN/100mL) and in 70 (39.5%) well samples (2.0 - 8.6x10(4) MPN/100mL). Thus, these samples were not in accordance with the Brazilian Regulation. Enterococcus was detected in 20 (22.5%) samples of the community plastic tanks (1 to 79 NC/100mL) and in 142 (80.2%) well samples (1 to >200 NC/100mL). C. perfringens was detected in 5 (12.5%) community plastic tanks samples and in 35 (87.5%) wells samples (2.2 to >16 MPN/100mL). HPC were above 500 CFU/mL in 5 (5.6%) waters from community plastic tanks. In wells samples, the HPC ranged from <1 to 1.6x10(4) CFU/mL. The residual chlorine did not attend the standard established in the drinking water legislation (0.2 mg/L), except in 20 (22.5%) samples. These results confirm the vulnerability of the water supply systems in this peri-urban area what is clearly a public health concern.
Resumo:
We considered whether ecological restoration using high diversity of native tree species serves to restore nitrogen dynamics in the Brazilian Atlantic Forest. We measured delta(15)N and N content in green foliage and soil; vegetation N:P ratio; and soil N mineralization in a preserved natural forest and restored forests of ages 21 and 52 years. Green foliage delta(15)N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates were all higher, the older the forest. Our findings indicate that the recuperation of N cycling has not been achieved yet in the restored forests even after 52 years, but show that they are following a trajectory of development that is characterized by their N cycling intensity becoming similar to a natural mature forest of the same original forest formation. This study demonstrated that some young restored forests are more limited by N compared to mature natural forests. We document that the recuperation of N cycling in tropical forests can be achieved through ecological restoration actions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
Resumo:
Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NO(x)(-)/S(2-) ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NO(x)(-)/S(2-) ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage.
Resumo:
The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m(3) m(-2) d(-1)) organic (0.26 kg COD m(-3) d(-1)) and ammonia-N (0.08 kg m(-3) d(-1)) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L(-1). Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L(-1). The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.
Resumo:
Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.