198 resultados para Hemicellulosic hydrolysate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 30 years, unhealthy diets and lifestyles have increased the incidence of noncommunicable diseases and are culprits of diffusion on world’s population of syndromes as obesity or other metabolic disorders, reaching pandemic proportions. In order to comply with such scenario, the food industry has tackled these challenges with different approaches, as the reformulation of foods, fortification of foods, substitution of ingredients and supplements with healthier ingredients, reduced animal protein, reduced fats and improved fibres applications. Although the technological quality of these emerging food products is known, the impact they have on the gut microbiota of consumers remains unclear. In the present PhD thesis, the recipient work was conducted to study different foods with the substitution of the industrial and market components to that of novel green oriented and sustainable ingredients. So far, this thesis included eight representative case studies of the most common substitutions/additions/fortifications in dairy, meat, and vegetable products. The products studied were: (i) a set of breads fortified with polyphenol-rich olive fiber, to replace synthetic antioxidant and preservatives, (ii) a set of Gluten-free breads fortified with algae powder, to fortify the protein content of standard GF products, (iii) different formulations of salami where nitrates were replaced by ascorbic acid and vegetal extract antioxidants and nitrate-reducers starter cultures, (iv) chocolate fiber plus D-Limonene food supplement, as a novel prebiotic formula, (v) hemp seed bran and its alkalase hydrolysate, to introduce as a supplement, (vi) milk with and without lactose, to evaluate the different impact on human colonic microbiota of healthy or lactose-intolerants, (vii) lactose-free whey fermented and/or with probiotics added, to be introduced as an alternative beverage, exploring its impact on human colonic microbiota from healthy or lactose-intolerants, and (viii) antibiotics, to assess whether maternal amoxicillin affects the colon microbiota of piglets.