474 resultados para Heme
Resumo:
The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.
Resumo:
The effect of La3+ on the electrochemical behavior and structure of heme undecapeptide-microperoxidase-11 (MP-11)-in the aqueous solution was investigated using cyclic voltammetry, circular dichroism (CD) and UV-vis absorption spectrometry. It was found for the first time that La3+ would promote the electrochemical reaction of MP-11 at the glassy carbon (GC) electrode. This is mainly due to the fact that La3+ would induce more beta-turn and alpha-helical conformations from the random coil conformation of MP-11 and increase the non-planarity of the heme.
Resumo:
The conformation of microperoxidase-11 (MP-11) adsorbed on roughened silver electrodes was studied using surface-enhanced Fourier transform Raman spectroscopy. The results demonstrate that MP-11 was initially adsorbed via its polypeptide chain with a alpha-helix conformation, as indicated by the enhancement of the characteristic bands related to the amides I and III. The weak resonance effect of the porphyrin macrocycle in the near IR region contributes to the spectrum of the heme group. The presence of imidazole as the sixth ligand to the heme iron influences the conformation of the polypeptide chain of MP-11 on the electrode surface. Evaporation of solvent water results in an opened conformation of the adsorbed MP-11. which allows the heme group to contact the electrode surface directly.
Resumo:
The interaction of MP-11 as a model of antioxidatase enzymes with La3+ was investigated. It was found that La3+ can increase in the non-planarity of heme and the content of alpha helix and beta turn conformations of the MP11 molecule. The change in the secondary structure of the MP-11 molecule can increase in the exposure extent of heme to the solution. Therefore, the electrochemical reaction of MP-11 is promoted and the electrocatalytic activity to the reduction of H2O2 is increased. The results are consistent with that for the interaction of peroxidases(POD), one of the antioxidatase enzymes, obtained in the living plant experiments at low concentration of La3+.
Resumo:
The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Resumo:
Secondary and tertiary or quaternary structural changes in hemoglobin (HB) during an electroreduction process were studied by in situ circular dichroism (CD) spectroelectrochemistry with a long optical path thin-layer cell. By means of singular value decomposition least-squares analysis, CD spectra in the far-UV region give two similar a components with different CD intensity, indicating slight denaturation in the secondary structures due to the electric field effect. CD spectra in the Soret band show a R --> T transition of two quaternary structural components induced by electroreduction of the heme, which changes the redox states of the center ion from Fe3+ to Fe2+ and the coordination number from 6 to 5. The double logarithmic analysis shows that electroreduction of hemoglobin follows a chemical reaction with R --> T transition. Some parameters in the electrochemical process were obtained: formal potential, E-0t = -0.167 V; electrochemical kinetic overpotential, DeltaE(0) = -0.32 V; standard electrochemical reaction rate constant, k(0) = 1.79 x 10(-5) cm s(-1); product of electron transfer coefficient and electron number, alphan=0.14; and the equilibrium constant of R --> T transition, K-c = 9.0.
Resumo:
It is found that Ply adsorbed roughed silver electrode, it is easy to immobilize MP-11 with the electrostatic interaction and to prepare the MP-11/Ply/Ag modified electrode. The preparation method of the modified electrode is simple. In addition, the modified electrode obtained shows the high and stable electrocatalytic activity for O-2 reduction. It is also found that when the sixth coordination of heme in MP-11 is replaced with other coordination species with stronger coordination ability, such as imidazole, its formal redox potential shifts to the negative direction and the electrocatalytic activity for O-2 reduction is reduced.
Resumo:
The spectroscopic characteristics of cytochrome c(WT) and its mutants(Y67F and N521) in the low frequency region were studied by Resonance Raman technique. The results show that the replacement of phenylalanine for Tyr 67 in WT had a very slight effect on the hydrogen-bonding and conformation of the amino acid residues around propionic acid side chains of heme group. However, large effects on the hydrogen-bonding of internal water with its surrounding amino acid residues and hydrophobility of the home cavity were observed as Asn 52 was substituted with isoleucine, which resulted in conformational regulations of home group and surrounding amino acid residues.
Resumo:
The effect of rare-earth ion Er3+ On myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er3+. Er3+ added to Mb affects the oxidation and spin state synchronously. The structure-sensitive groups of Mb are more accessible to the Er3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er3+ does not interact with heme directly, and Er3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme.
Resumo:
The electron transfer and structure of microperoxidase-11(MP-11) in solution and at electrode/solution interface were studied by electrochemical, resonance Raman and surface-enhanced Raman spectroscopic techniques. Results show that the central iron in heme group was six-coordinated in solution, whereas it was converted to five-coordinated state as MP-11 was adsorbed on the surface of a roughened silver electrode, due to the reorientation of MP-11 molecules. The electrochemical properties of MP-11 were directly affected by the coordination state of heme iron.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Electrochemistry and spectroscopy study on the interaction of microperoxidase-11 with lipid membrane
Resumo:
The interaction of microperoxidase-11 (MP11) with cationic lipid vesicles of didodecyldimethylammonium bromide (DDAB) induces an alpha -helical conformation from random coil conformations in solution and this change then makes heme macrocycle more distorted. DDAB-induced MP11 conformations were investigated by cyclic votammetry (CV), circular dichroism (CD) and UV-vis spectrometry. All results indicate that the binding of MP11 in solution to DDAB vesicles and the ordered structure formation are driven by mostly electrostatic interaction between negatively charged residues in the undecapeptide and positively charged lipid headgroups on the membrane surface. Upon binding to DDAB, its half-peak potential was also changed. The mechanism of the interaction between MP11 and DDAB was also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Detailed circular dichroism(CD) and Fourier transform infrared (FTIR) studies have been carried out to monitor thermal unfolding of horseradish peroxidase isoenzyme C(HRP) inhibited by CN(HRP-CN). The results suggest that HRP-CN is quite different from native HRP with different spin states of Fe of heme and different coordinated states. Cyanide becomes the sixth ligand of Fe(I) of heme and the hydrogen-binding network is destroyed partly at the same time, which cause the drastic decrease of thermal stability of HRP. The FTIR and Soret-CD spectra analysis demonstrate that during the heating process there is an intermediate state(I') which has both partly destroyed secondary and tertiary structures of native HRP, then it is the appearance of protein aggregation state(A) after fully unfolding. The unfolding pathway thus can be shown as follows: I -->I'-->U -->A.
Resumo:
The synchronous fluorescence spectra of myoglobin were studies for the first time. The fluorescence peals observed in the spectra were assigned, When the wavelength interval (Delta lambda) is 80 nm, the main peak at 335 nm is originated from the tryptophan residues in the myoglobin molecule. When Delta lambda is 20 nn, the peak at 308 nm is mainly due to the tyrosine residues in the myoglobin molecule and in a small part due to the tryptophan residues. Two peaks at 322 and 596 nm were observed in the spectrum of myoglobin for Delta lambda = 40 nm. The peak at 322 nm is due to both tyrosine and tryptophan residues. The peak at 596 nm is attributed to the heme group in the myoglobin molecule.