834 resultados para Heart-rate-variability
Resumo:
Cardiotocographic data provide physicians information about foetal development and permit to assess conditions such as foetal distress. An incorrect evaluation of the foetal status can be of course very dangerous. To improve interpretation of cardiotocographic recordings, great interest has been dedicated to foetal heart rate variability spectral analysis. It is worth reminding, however, that foetal heart rate is intrinsically an uneven series, so in order to produce an evenly sampled series a zero-order, linear or cubic spline interpolation can be employed. This is not suitable for frequency analyses because interpolation introduces alterations in the foetal heart rate power spectrum. In particular, interpolation process can produce alterations of the power spectral density that, for example, affects the estimation of the sympatho-vagal balance (computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations of the foetal heart rate variability signal due to interpolation and cardiotocographic storage rates, in this work, we simulated uneven foetal heart rate series with set characteristics, their evenly spaced versions (with different orders of interpolation and storage rates) and computed the sympatho-vagal balance values by power spectral density. For power spectral density estimation, we chose the Lomb method, as suggested by other authors to study the uneven heart rate series in adults. Summarising, the obtained results show that the evaluation of SVB values on the evenly spaced FHR series provides its overestimation due to the interpolation process and to the storage rate. However, cubic spline interpolation produces more robust and accurate results. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified.
Resumo:
Acknowledgments Dr Ashrafian acknowledges support from the BHF Center of Research Excellence, Oxford, UK. The research was also supported by the National Institute for Health Research Oxford Biomedical Research Center Program and by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC)
Resumo:
Acknowledgments Dr Ashrafian acknowledges support from the BHF Center of Research Excellence, Oxford, UK. The research was also supported by the National Institute for Health Research Oxford Biomedical Research Center Program and by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC)
Resumo:
Amphetamine enhances recovery after experimental ischaemia and has shown promise in small clinical trials when combined with motor or sensory stimulation. Amphetamine, a sympathomimetic, might have haemodynamic effects in stroke patients, although limited data have been published. Subjects were recruited 3-30 days post ischaemic stroke into a phase II randomised (1:1), double blind, placebo-controlled trial. Subjects received dexamphetamine (5mg initially, then 10mg for 10 subsequent doses with 3 or 4 day separations) or placebo in addition to inpatient physiotherapy. Recovery was assessed by motor scales (Fugl-Meyer, FM), and functional scales (Barthel index, BI and modified Rankin score, mRS). Peripheral blood pressure (BP), central haemodynamics and middle cerebral artery blood flow velocity were assessed before, and 90 minutes after, the first 2 doses. 33 subjects were recruited, age 33-88 (mean 71) years, males 52%, 4-30 (median 15) days post stroke to inclusion. 16 patients were randomised to placebo and 17 amphetamine. Amphetamine did not improve motor function at 90 days; mean (standard deviation) FM 37.6 (27.6) vs. control 35.2 (27.8) (p=0.81). Functional outcome (BI, mRS) did not differ between treatment groups. Peripheral and central systolic BP, and heart rate, were 11.2 mmHg (p=0.03), 9.5 mmHg (p=0.04) and 7 beats/minute (p=0.02) higher respectively with amphetamine, compared with control. A non-significant reduction in myocardial perfusion (Buckberg Index) was seen with amphetamine. Other cardiac and cerebral haemodynamics were unaffected. Amphetamine did not improve motor impairment or function after ischaemic stroke but did significantly increase BP and heart rate without altering cerebral haemodynamics.
Resumo:
To determine whether the heart rate (HR) response to exercise in 21 highly trained cyclists (mean (SD) age 25 (3) years) was related to their heart dimensions. Methods—Before performing an incremental exercise test involving a ramp protocol with workload increases of 25 W/min, each subject underwent echocardiographic evaluation of the following variables: left ventricular end diastolic internal diameter (LVIDd), left ventricular posterior wall thickness at end diastole (LVPWTd), interventricular septal wall thickness at end diastole (IVSTd), left ventricular mass index (LVMI), left atrial dimension (LAD), longitudinal left atrial (LLAD) and right atrial (LRAD) dimensions, and the ratio of early to late (E/A) diastolic flow velocity. Results—The HR response showed a de- flection point (HRd) at about 85% V~ O2MAX in 66.7% of subjects (D group; n = 14) and was linear in 33.3% (NoD group; n = 7). Several echocardiographic variables (LVMI, LAD, LLAD, LRAD) indicative of heart dimensions were similar in each group. However, mean LPWTd (p<0.01) and IVSTd (p<0.05) values were signifi- cantly higher in the D group. Finally, no significant diVerence between groups was found with respect to the E/A. The HR response is curvilinear during incremental exercise in a considerable number of highly trained endurance athletes—that is, top level cyclists. The departure of HR increase from linearity may predominantly occur in athletes with thicker heart walls.
Resumo:
Cardiovascular disease is one of the leading causes of death around the world. Resting heart rate has been shown to be a strong and independent risk marker for adverse cardiovascular events and mortality, and yet its role as a predictor of risk is somewhat overlooked in clinical practice. With the aim of highlighting its prognostic value, the role of resting heart rate as a risk marker for death and other adverse outcomes was further examined in a number of different patient populations. A systematic review of studies that previously assessed the prognostic value of resting heart rate for mortality and other adverse cardiovascular outcomes was presented. New analyses of nine clinical trials were carried out. Both the original and extended Cox model that allows for analysis of time-dependent covariates were used to evaluate and compare the predictive value of baseline and time-updated heart rate measurements for adverse outcomes in the CAPRICORN, EUROPA, PROSPER, PERFORM, BEAUTIFUL and SHIFT populations. Pooled individual patient meta-analyses of the CAPRICORN, EPHESUS, OPTIMAAL and VALIANT trials, and the BEAUTIFUL and SHIFT trials, were also performed. The discrimination and calibration of the models applied were evaluated using Harrell’s C-statistic and likelihood ratio tests, respectively. Finally, following on from the systematic review, meta-analyses of the relation between baseline and time-updated heart rate, and the risk of death from any cause and from cardiovascular causes, were conducted. Both elevated baseline and time-updated resting heart rates were found to be associated with an increase in the risk of mortality and other adverse cardiovascular events in all of the populations analysed. In some cases, elevated time-updated heart rate was associated with risk of events where baseline heart rate was not. Time-updated heart rate also contributed additional information about the risk of certain events despite knowledge of baseline heart rate or previous heart rate measurements. The addition of resting heart rate to the models where resting heart rate was found to be associated with risk of outcome improved both discrimination and calibration, and in general, the models including time-updated heart rate along with baseline or the previous heart rate measurement had the highest and similar C-statistics, and thus the greatest discriminative ability. The meta-analyses demonstrated that a 5bpm higher baseline heart rate was associated with a 7.9% and an 8.0% increase in the risk of all-cause and cardiovascular death, respectively (both p less than 0.001). Additionally, a 5bpm higher time-updated heart rate (adjusted for baseline heart rate in eight of the ten studies included in the analyses) was associated with a 12.8% (p less than 0.001) and a 10.9% (p less than 0.001) increase in the risk of all-cause and cardiovascular death, respectively. These findings may motivate health care professionals to routinely assess resting heart rate in order to identify individuals at a higher risk of adverse events. The fact that the addition of time-updated resting heart rate improved the discrimination and calibration of models for certain outcomes, even if only modestly, strengthens the case that it be added to traditional risk models. The findings, however, are of particular importance, and have greater implications for the clinical management of patients with pre-existing disease. An elevated, or increasing heart rate over time could be used as a tool, potentially alongside other established risk scores, to help doctors identify patient deterioration or those at higher risk, who might benefit from more intensive monitoring or treatment re-evaluation. Further exploration of the role of continuous recording of resting heart rate, say, when patients are at home, would be informative. In addition, investigation into the cost-effectiveness and optimal frequency of resting heart rate measurement is required. One of the most vital areas for future research is the definition of an objective cut-off value for the definition of a high resting heart rate.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
A central topic in economics is the existence of social preferences. Behavioural economics in general has approached the issue from several angles. Controlled experimental settings, surveys, and field experiments are able to show that in a number of economic environments, people usually care about immaterial things such as fairness or equity of allocations. Findings from experimental economics specifically have lead to large increase in theories addressing social preferences. Most (pro)social phenomena are well understood in the experimental settings but very difficult to observe 'in the wild'. One criticism in this regard is that many findings are bound by the artificial environment of the computer lab or survey method used. A further criticism is that the traditional methods also fail to directly attribute the observed behaviour to the mental constructs that are expected to stand behind them. This thesis will first examine the usefulness of sports data to test social preference models in a field environment, thus overcoming limitations of the lab with regards to applicability to other - non-artificial - environments. The second major contribution of this research establishes a new neuroscientific tool - the measurement of the heart rate variability - to observe participants' emotional reactions in a traditional experimental setup.
Resumo:
This thesis advances the knowledge of behavioural economics on the importance of individual characteristics – such as gender, personality or culture – for choices relevant to labour and insurance markets. It does so using economic experiments, survey tools and physiological data, collected in economic laboratories and in the field. More specifically, the thesis includes 5 experimental economic studies investigating individual-specific characteristics (gender, age, personality, cultural background) in decisions influenced by risk attitudes and social preferences. One of these characteristics is the physiological state of decision-makers, measured by heart rate variability. The results show that individual-specific characteristics play an important role for choices affected by social preferences, a finding to a lesser degree observable for risk preferences. This finding is confirmed under revealed incentivised choices and when studying (latent) physiological responses of decision-makers.