864 resultados para Hazard perception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M-w) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01 degrees and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a detailed study on the seismic pattern of the state of Karnataka and also quantifies the seismic hazard for the entire state. In the present work, historical and instrumental seismicity data for Karnataka (within 300 km from Karnataka political boundary) were compiled and hazard analysis was done based on this data. Geographically, Karnataka forms a part of peninsular India which is tectonically identified as an intraplate region of Indian plate. Due to the convergent movement of the Indian plate with the Eurasian plate, movements are occurring along major intraplate faults resulting in seismic activity of the region and hence the hazard assessment of this region is very important. Apart from referring to seismotectonic atlas for identifying faults and fractures, major lineaments in the study area were also mapped using satellite data. The earthquake events reported by various national and international agencies were collected until 2009. Declustering of earthquake events was done to remove foreshocks and aftershocks. Seismic hazard analysis was done for the state of Karnataka using both deterministic and probabilistic approaches incorporating logic tree methodology. The peak ground acceleration (PGA) at rock level was evaluated for the entire state considering a grid size of 0.05A degrees x 0.05A degrees. The attenuation relations proposed for stable continental shield region were used in evaluating the seismic hazard with appropriate weightage factors. Response spectra at rock level for important Tier II cities and Bangalore were evaluated. The contour maps showing the spatial variation of PGA values at bedrock are presented in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An updated catalog of earthquakes has been prepared for the Andaman-Nicobar and adjoining regions. The catalog was homogenized to a unified magnitude scale, and declustering of the catalog was performed to remove aftershocks and foreshocks. Eleven regional source zones were identified in the study area to account for local variability in seismicity characteristics. The seismicity parameters were estimated for each of these source zones, and the seismic hazard evaluation of the Andaman-Nicobar region has been performed using different source models and attenuation relations. Probabilistic seismic hazard analysis has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude, and attenuation relationships). The hazard maps for different periods have been produced for horizontal ground motion on the bedrock level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated geo-hazard warning system is the need of the hour. It is integration of automation in hazard evaluation and warning communication. The primary objective of this paper is to explain a geo-hazard warning system based on Internet-resident concept and available cellular mobile infrastructure that makes use of geo-spatial data. The functionality of the system is modular in architecture having input, understanding, expert, output and warning modules. Thus, the system provides flexibility in integration between different types of hazard evaluation and communication systems leading to a generalized hazard warning system. The developed system has been validated for landslide hazard in Indian conditions. It has been realized through utilization of landslide causative factors, rainfall forecast from NASA's TRMM (Tropical Rainfall Measuring Mission) and knowledge base of landslide hazard intensity map and invokes the warning as warranted. The system evaluated hazard commensurate with expert evaluation within 5-6 % variability, and the warning message permeability has been found to be virtually instantaneous, with a maximum time lag recorded as 50 s, minimum of 10 s. So it could be concluded that a novel and stand-alone system for dynamic hazard warning has been developed and implemented. Such a handy system could be very useful in a densely populated country where people are unaware of the impending hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6 degrees-38 degrees N and 68 degrees-98 degrees E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1 degrees x 0.1 degrees (approximately 10 x 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2 % probability of exceedance in 50 years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6-38 degrees N and 68-98 degrees E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1 degrees x 0.1 degrees. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar-Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar-Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow-Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow-Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11-0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a linear time-varying model for diphthong synthesis based on linear interpolation of formant frequencies. We, thence, determine the timbre just-noticeable difference (JND) for diphthong /a I/ (as in ‘buy’) with a constant pitch excitation through perception experiment involving four listeners and explore the phonetic JND of the diphthong. Their JND responses are determined using 1-up-3-down procedure. Using the experimental data, we map the timbre JND and phonetic JND onto a 2-D region of percentage change of formant glides. The timbre and phonetic JND contours for constant pitch show that the phonetic JND region encloses timbre JND region and also varies across listeners. The JND is observed to be more sensitive to ending vowel /I/ than starting vowel /a/ in some listeners and dependent on the direction of perturbation of starting and ending vowels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic hazard value of any region depends upon three important components such as probable earthquake location, maximum earthquake magnitude and the attenuation equation. This paper presents a representative way of estimating these three important components considering region specific seismotectonic features. Rupture Based Seismic Hazard Analysis (RBSHA) given by Anbazhagan et al. (2011) is used to determine the probable future earthquake locations. This approach is verified on the earthquake data of Bhuj region. The probable earthquake location for this region is identified considering earthquake data till the year 2000. These identified locations match well with the reported locations after 2000. The further Coimbatore City is selected as the study area to develop a representative seismic hazard map using RBSHA approach and to compare with deterministic seismic hazard analysis. Probable future earthquake zones for Coimbatore are located considering the rupture phenomenon as per energy release theory discussed by Anbazhagan et at (2011). Rupture character of the region has been established by estimating the subsurface rupture length of each source and normalized with respect to the length of the source. Average rupture length of the source with respect to its total length is found to be similar for most of the sources in the region, which is called as the rupture character of the region. Maximum magnitudes of probable zones are estimated considering seismic sources close by and regional rupture character established. Representative GMPEs for the study area have been selected by carrying out efficacy test through an average log likelihood value (LLH) as ranking estimator and considering the Isoseismal map. New seismic hazard map of Coimbatore has been developed using the above regional representative parameters of probable earthquake locations, maximum earthquake magnitude and best suitable GMPEs. The new hazard map gives acceleration values at bedrock for maximum possible earthquakes. These results are compared with deterministic seismic hazard map and recently published probabilistic seismic hazard values. (C) 2014 Elsevier B.V. All rights reserved.