991 resultados para HORMONE-BINDING-GLOBULIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 also makes a direct contact with FTZ-F1 through the C-terminal region of the FTZ-F1 DNA-binding domain and stimulates the FTZ-F1 binding to its recognition site. The central region of MBF1 (residues 35–113) is essential for the binding of FTZ-F1, MBF2, and TBP. When the recombinant MBF1 was added to a HeLa cell nuclear extract in the presence of MBF2 and FTZ622 bearing the FTZ-F1 DNA-binding domain, it supported selective transcriptional activation of the fushi tarazu gene as natural MBF1 did. Mutations disrupting the binding of FTZ622 to DNA or MBF1, or a MBF2 mutation disrupting the binding to MBF1, all abolished the selective activation of transcription. These results suggest that tethering of the positive cofactor MBF2 to a FTZ-F1-binding site through FTZ-F1 and MBF1 is essential for the binding site-dependent activation of transcription. A homology search in the databases revealed that the deduced amino acid sequence of MBF1 is conserved across species from yeast to human.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages. In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose–response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40–50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GH. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription–PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish serum contains several specific binding proteins for insulin-like growth factors (IGFBPs). The structure and physiological function of these fish IGFBPs are unknown. Here we report the complete primary sequence of a zebrafish IGFBP deduced from cDNA clones isolated by library screening and rapid amplification of cDNA ends. The full-length 1,757-bp cDNA encodes a protein of 276 aa, which contains a putative 22-residue signal peptide and a 254-residue mature protein. The mature zebrafish IGFBP has a predicted molecular size of 28,440 Da and shows high sequence identity with human IGFBP-2 (52%). The sequence identities with other human IGFBPs are <37%. Chinese hamster ovary cells stably transfected with the zebrafish IGFBP-2 cDNA secreted a 31-kDa protein, which bound to IGF-I and IGF-II with high affinity, but did not bind to Des(1–3)IGF-I or insulin. Northern blot analyses revealed that the zebrafish IGFBP-2 transcript is a 1.8-kb band expressed in many embryonic and adult tissues. In adult zebrafish, IGFBP-2 mRNA levels were greatly reduced by growth hormone treatment but increased by prolonged fasting. When overexpressed or added to cultured zebrafish and mammalian cells, the zebrafish IGFBP-2 significantly inhibited IGF-I-stimulated cell proliferation and DNA synthesis. These results indicate that zebrafish IGFBP-2 is a negative growth regulator acting downstream in the growth hormone-IGF-I axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear hormone receptors are potent repressors of transcription in the unliganded state. We describe here the cloning of a nuclear receptor corepressor that we call SUN-CoR (Small Unique Nuclear receptor CoRepressor), which shows no homology to previously described nuclear hormone receptor corepressors, N-CoR, or SMRT. SUN-CoR is a highly basic, 16-kDa nuclear protein that is expressed at high levels in adult tissues and is induced during adipocyte and myogenic differentiation. SUN-CoR potentiates transcriptional repression by thyroid hormone receptor and RevErb in vivo, represses transcription when fused to a heterologous DNA binding domain, and interacts with RevErb as well as with thyroid hormone receptor in vitro. SUN-CoR also interacts with N-CoR and SMRT in vitro and with endogenous N-CoR in cells. We conclude that SUN-CoR is a corepressor and may function as an additional component of the complex involved in transcriptional repression by unliganded and orphan nuclear hormone receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevation of the neuropeptide corticotropin-releasing factor (CRF) in the brain is associated with a reduction of food intake and body weight gain in normal and obese animals. A protein that binds CRF and the related peptide, urocortin, with high affinity, CRF-binding protein (CRF-BP), may play a role in energy homeostasis by inactivating members of this peptide family in ingestive and metabolic regulatory brain regions. Intracerebroventricular administration in rats of the high-affinity CRF-BP ligand inhibitor, rat/human CRF (6-33), which dissociates CRF or urocortin from CRF-BP and increases endogenous brain levels of “free” CRF or urocortin significantly blunted exaggerated weight gain in Zucker obese subjects and in animals withdrawn from chronic nicotine. Chronic administration of CRF suppressed weight gain nonselectively by 60% in both Zucker obese and lean control rats, whereas CRF-BP ligand inhibitor treatment significantly reduced weight gain in obese subjects, without altering weight gain in lean control subjects. Nicotine abstinent subjects, but not nicotine-naive controls, experienced a 35% appetite suppression and a 25% weight gain reduction following acute and chronic administration, respectively, of CRF-BP ligand inhibitor. In marked contrast to the effects of a CRF-receptor agonist, the CRF-BP ligand inhibitor did not stimulate adrenocorticotropic hormone secretion or elevate heart rate and blood pressure. These results provide support for the hypothesis that the CRF-BP may function within the brain to limit selected actions of CRF and/or urocortin. Furthermore, CRF-BP may represent a novel and functionally selective target for the symptomatic treatment of excessive weight gain associated with obesity of multiple etiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of various tumors is inhibited by the antagonists of growth hormone-releasing hormone (GHRH) in vitro and in vivo, but the receptors mediating the effects of GHRH antagonists have not been identified so far. Using an approach based on PCR, we detected two major splice variants (SVs) of mRNA for human GHRH receptor (GHRH-R) in human cancer cell lines, including LNCaP prostatic, MiaPaCa-2 pancreatic, MDA-MB-468 breast, OV-1063 ovarian, and H-69 small-cell lung carcinomas. In addition, high-affinity, low-capacity binding sites for GHRH antagonists were found on the membranes of cancer cell lines such as MiaPaCa-2 that are negative for the vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptor (VPAC-R) or lines such as LNCaP that are positive for VPAC-R. Sequence analysis of cDNAs revealed that the first three exons in SV1 and SV2 are replaced by a fragment of retained intron 3 having a new putative in-frame start codon. The rest of the coding region of SV1 is identical to that of human pituitary GHRH-R, whereas in SV2 exon 7 is spliced out, resulting in a 1-nt upstream frameshift, which leads to a premature stop codon in exon 8. The intronic sequence may encode a distinct 25-aa fragment of the N-terminal extracellular domain, which could serve as a proposed signal peptide. The continuation of the deduced protein sequence coded by exons 4–13 in SV1 is identical to that of pituitary GHRH-R. SV2 may encode a GHRH-R isoform truncated after the second transmembrane domain. Thus SVs of GHRH-Rs have now been identified in human extrapituitary cells. The findings support the view that distinct receptors are expressed on human cancer cells, which may mediate the antiproliferative effect of GHRH antagonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current paper describes a line of cultured rat hepatoma cells (McA-RH7777 cells) that mimics the behavior of rat liver by producing an excess of mRNA for sterol regulatory element-binding protein 1c (SREBP-1c) as opposed to SREBP-1a. These two transcripts are derived from a single gene by use of alternative promoters that are separated by many kilobases in the genome. The high level of SREBP-1c mRNA is abolished when cholesterol synthesis is blocked by compactin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase that inhibits cholesterol synthesis. Levels of SREBP-1c mRNA are restored by mevalonate, the product of the HMG CoA reductase reaction, and by ligands for the nuclear hormone receptor LXR, including 22(R)-hydroxycholesterol and T0901317. These data suggest that transcription of the SREBP-1c gene in hepatocytes requires tonic activation of LXR by an oxysterol intermediate in the cholesterol biosynthetic pathway. Reduction of this intermediate lowers SREBP-1c levels, and this in turn is predicted to lower the rates of fatty acid biosynthesis in liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital hypothyroidism and the thyroid hormone (T3) resistance syndrome are associated with severe central nervous system (CNS) dysfunction. Because thyroid hormones are thought to act principally by binding to their nuclear receptors (TRs), it is unexplained why TR knock-out animals are reported to have normal CNS structure and function. To investigate this discrepancy further, a T3 binding mutation was introduced into the mouse TR-β locus by homologous recombination. Because of this T3 binding defect, the mutant TR constitutively interacts with corepressor proteins and mimics the hypothyroid state, regardless of the circulating thyroid hormone concentrations. Severe abnormalities in cerebellar development and function and abnormal hippocampal gene expression and learning were found. These findings demonstrate the specific and deleterious action of unliganded TR in the brain and suggest the importance of corepressors bound to TR in the pathogenesis of hypothyroidism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sterol regulatory element-binding protein-1c (SREBP-1c) enhances transcription of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver. SREBP-1c mRNA is known to increase when cells are treated with agonists of liver X receptor (LXR), a nuclear hormone receptor, and to decrease when cells are treated with unsaturated fatty acids, the end products of SREBP-1c action. Here we show that unsaturated fatty acids lower SREBP-1c mRNA levels in part by antagonizing the actions of LXR. In cultured rat hepatoma cells, arachidonic acid and other fatty acids competitively inhibited activation of the endogenous SREBP-1c gene by an LXR ligand. Arachidonate also blocked the activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney-293 cells. In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR, as reflected by a fluorescence polarization assay that measures ligand-dependent binding of LXR to a peptide derived from a coactivator. These data offer a potential mechanism that partially explains the long-known ability of dietary unsaturated fatty acids to decrease the synthesis and secretion of fatty acids and triglycerides in livers of humans and other animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen receptor (ER) and thyroid hormone receptors (TRs) are ligand-dependent nuclear transcription factors that can bind to an identical half-site, AGGTCA, of their cognate hormone response elements. By in vitro transfection analysis in CV-1 cells, we show that estrogen induction of chloramphenicol acetyltransferase (CAT) activity in a construct containing a CAT reporter gene under the control of a minimal thymidine kinase (tk) promoter and a copy of the consensus ER response element was attenuated by cotransfection of TR alpha 1 plus triiodothyronine treatment. This inhibitory effect of TR was ligand-dependent and isoform-specific. Neither TR beta 1 nor TR beta 2 cotransfection inhibited estrogen-induced CAT activity, although both TR alpha and TR beta can bind to a consensus ER response element. Furthermore, cotransfection of a mutated TR alpha 1 that lacks binding to the AGGTCA sequence also inhibited the estrogen effect. Thus, the repression of estrogen action by liganded TR alpha 1 may involve protein-protein interactions although competition of ER and TR at the DNA level cannot be excluded. A similar inhibitory effect of liganded TR alpha 1 on estrogen induction of CAT activity was observed in a construct containing the preproenkephalin (PPE) promoter. A study in hypophysectomized female rats demonstrated that the estrogen-induced increase in PPE mRNA levels in the ventromedial hypothalamus was diminished by coadministration of triiodothyronine. These results suggest that ER and TR may interact to modulate estrogen-sensitive gene expression, such as for PPE, in the hypothalamus.