942 resultados para HEXAGONAL INN
Resumo:
A novel Linear Hashtable Method Predicted Hexagonal Search (LHMPHS) method for block based motion compensation is proposed. Fast block matching algorithms use the origin as the initial search center, which often does not track motion very well. To improve the accuracy of the fast BMA's, we employ a predicted starting search point, which reflects the motion trend of the current block. The predicted search centre is found closer to the global minimum. Thus the center-biased BMA's can be used to find the motion vector more efficiently. The performance of the algorithm is evaluated by using standard video sequences, considers the three important metrics: The results show that the proposed algorithm enhances the accuracy of current hexagonal algorithms and is better than Full Search, Logarithmic Search etc.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for block base motion compensation. On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduced hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms, Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
The adsorption of water on a model hexagonal surface has been studied using accurate intermolecular potentials. The structure and binding energies of single molecules, clusters, and adlayers are obtained. The limiting case of weak, nondirectional surface-water interactions presented here is compared with other cases involving water-water and water-surface interactions of a similar magnitude (partial templating) and dominating water-surface interactions (perfect templating) from the literature. None of these models is conducive to the nucleation of ice, each for different reasons.Wecommenton the requirements for a good ice-nucleating surface.
Resumo:
The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.
Resumo:
M-type barium hexaferrite (BaM) is a hard ferrite, crystallizing in space group P6(3)/mmc possessing a hexagonal magneto-plumbite structure, which consists of alternate hexagonal and spinel blocks. The structure of BaM is thus related to those of garnet and spinel ferrite. However the material has proved difficult to synthesize. By taking into account the presence of the spinel block in barium hexagonal ferrite, highly efficient new synthetic methods were devised with routes significantly different from existing ones. These successful variations in synthetic methods have been derived by taking into account a detailed investigation of the structural features of barium hexagonal ferrite and the least change principle whereby configuration changes are kept to a minimum. Thus considering the relevant mechanisms has helped to improve the synthesis efficiencies for both hydrothermal and co-precipitation methods by choosing conditions that invoke the formation of the cubic block or the less stable Fe3O4. The role played by BaFe2O4 in the synthesis is also discussed. The distribution of iron from reactants or intermediates among different sites was also successfully explained. The proposed mechanisms are based on the principle that the cubic block must be self-assembled to form the final product. Thus, it is believed that these formulated mechanisms should be helpful in designing experiments to obtain a deeper understanding of the synthesis process and to investigate the substitution of magnetic ions with doping ions.
Resumo:
Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.
Resumo:
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (LR), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.
Resumo:
A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.
Resumo:
In this paper we study the Lyapunov stability and the Hopf bifurcation in a system coupling an hexagonal centrifugal governor with a steam engine. Here are given sufficient conditions for the stability of the equilibrium state and of the bifurcating periodic orbit. These conditions are expressed in terms of the physical parameters of the system, and hold for parameters outside a variety of codimension two. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Helstångsborr och konstång kallas bergborrverktyg, som tillverkas av sexkantiga stänger med inre hål för ledning av spolvatten. Dessa spolhål är klädda med ferritiskt rostfritt stål. Innan valsning borras ett centrerat hål i stålämnet som ska valsas. I det borrade hålet appliceras ett rör av ferritiskt rostfritt stål och i det röret skjuts en manganstålskärna in. Efter valsning dras kärnan ut och ett spolhål med invändigt foder av rostfritt stål bildas. Under uppvärmningen och valsningen av stålämnet sker normalt en koldiffusion från manganstålskärnan till det rostfria fodret. Fodrets syfte är att skydda spolhålets yta mot erosion och korrosion.Syftet med arbetet var att hitta en metod som garanterar uppkolning av det invändiga fodret, samt att utreda vad uppkolningen betyder för den mekaniska hållfastheten i stängerna. Ett laboratorieförsök visade att det var bra, med avseende på uppkolning, att blanda stearat i kärnbestrykningsmedlet. Kärnbestrykningsmedlet penslas på manganstålskärnan innan den förs in i stålämnet som ska valsas, dess syfte är att minska friktionen vid kärnutdragningen efter valsning.Ett försök utfördes i valsverket med stearat i kärnbestrykningsmedlet. En grundlig undersökning utfördes på två hetor som valsats med stearat-bestrykningsmedel, samt på en traditionellt tillverkad heta för att ha som referens. Hetorna kapades till provstänger om 1,5 m, totalt undersöktes 55 st.Utvärderingen av verksförsöket visade att stängernas kvalitet blir tillräckligt bra om ingenting oförutsett händer i produktionen, oavsett om koltillskott är tillsatt i bestrykningsmedlet eller inte. Arbetet gav inte en garanterande metod, men visade att stängerna normalt håller hög kvalitet.
Resumo:
A method for the attachment of 2-mercaptothiazoline (MTZ) to modified silica gel has been developed. In the first step, a new silylant agent was synthesized, named SiMTZ, by the reaction between MTZ molecule and chloropropyltrimethoxysilane (SiCl). SiMTZ and tetraethylortosilicate were co-condensed in the presence of n-dodecylamine, a neutral surfactant template, to produce a modified ordered hexagonal mesoporous silica named HMTZ. The modified material contained 0.89 +/- 0.03 mmol of 2-mercaptothiazoline per gram of silica. FT-IR, FT-Raman, Si-29- and C-13-NMR spectra were in agreement with the proposed structure of the modified mesoporous silica in the solid state. HMTZ material has been used for divalent mercury adsorption from aqueous solution at 298 I K. The series of adsorption isotherms were adjusted to a modified Langmuir equation. The maximum number of moles of mercury adsorbed gave 2.34 +/- 0.09 mmol/g of material. The same interaction was followed by calorimetric titration on an isoperibol calorimeter. The HMTZ presented a high capacity for the removal of the contaminant mercury from water. The Delta H and Delta G values for the interaction were determined to be -56.34 +/- 1.07 and -2.14 +/- 0.11 kJ mol(-1). This interaction process was accompanied by a decrease of entropy value (- 182 J mol(-1) K-1). Thus, the interaction between mercury and HMTZ resulted in a spontaneous thermodynamic system with a high favorable exothermic enthalpic effect. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho, can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.
Resumo:
We report the synthesis of zirconia microneedles by the direct nucleation of particles inside a hexagonal swollen liquid crystal (SLC) (cell parameter a = 27 nm) prepared by mixing with the proper ratio, an aqueous solution of sulfated zirconium colloids, a cationic surfactant (cetylpyridinium chloride), cychlohexane as swelling agent with an oil over water ratio of 2.5 (vol.), and 1-pentanol as cosurfactant. After a slow crystallogenesis that can be enhanced by an initial induction step under moderate temperature, particles in the centimeter range can be obtained, with a very high shape ratio (over 100). These particles are made of crystalline octahydrate zirconium oxychloride containing pores of 20 nm diameter, aligned along the main axis of the liquid crystal, as the fingerprint of the oil cylinders present in the hexagonal phase. The morphology of these particles confirms that the shaping mechanism is based on true liquid crystal templating (TLCT). Further thermal treatment of these particles, after extraction from the SLC, leads to the crystallization of zirconia with the same needlelike morphology as the zirconium oxychloride.
Resumo:
Anodic aluminium oxide (AAO) films exhibiting a homogeneous morphology of parallel pores perpendicular to the surface were prepared in a two-step anodization process and filled with copper by electrochemical deposition. The optimum growth conditions for the formation of freestanding AAO films with hexagonal compact array of cylindrical pores were studied by field emission scanning electron microscopy and small angle X-ray scattering. The results show well-defined periodic structures with uniform pores size distribution for films with pore diameters between 40 and 70 nm prepared using different voltages and temperatures during the second anodization step. X-ray photoelectron spectroscopy and X-ray diffraction analysis of AAO films filled with copper show the formation of nanowires with high structural order, exhibiting a preferential crystalline orientation along the (2 2 0) axis and only small fraction of copper oxides. The best results for textured Cu nanowires were obtained at a reduction potential of -300 mV. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tin glycolate particles were prepared by a simple, one-step, polyol-mediated synthesis in air in which tin oxalate precursor was added to ethylene glycol and heated at reflux. Hexagonal-shaped, micron-sized tin glycolate particles were formed when the solution had cooled. A series of tin oxides was produced by calcination of the synthesized tin glycolate at 600-800 degrees C. It was revealed that the micron-sized, hexagonal-shaped tin glycolate now consisted of nanosized tin-based particles (80-120 nm), encapsulated within a tin glycolate shell. XRD, TGA, and FT-IR measurements were conducted to account for the three-dimensional growth of the tin glycolate particles. When applied as an anode material for Li-ion batteries, the synthesized tin glycolate particles showed good electro-chemical reactivity in Li-ion insertion/ deinsertion, retaining a specific capacity of 416mAhg(-1) beyond 50cycles. Ibis performance was significantly better than those of all the other tin oxides nanoparticles (< 160mAhg(-1)) obtained after heat treatment in air. We strongly believe that the buffering of the volume expansion by the glycolate upon Li-Sn alloying is the main factor for the improved cycling of the electrode.