629 resultados para HEME OXYGENASE
Resumo:
The FixL proteins are biological oxygen sensors that restrict the expression of specific genes to hypoxic conditions. FixL’s oxygen-detecting domain is a heme binding region that controls the activity of an attached histidine kinase. The FixL switch is regulated by binding of oxygen and other strong-field ligands. In the absence of bound ligand, the heme domain permits kinase activity. In the presence of bound ligand, this domain turns off kinase activity. Comparison of the structures of two forms of the Bradyrhizobium japonicum FixL heme domain, one in the “on” state without bound ligand and one in the “off” state with bound cyanide, reveals a mechanism of regulation by a heme that is distinct from the classical hemoglobin models. The close structural resemblance of the FixL heme domain to the photoactive yellow protein confirms the existence of a PAS structural motif but reveals the presence of an alternative regulatory gateway.
Resumo:
A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that they lacked several conserved RubisCO active site residues. The Chlorobium RubisCO-like proteins are most closely related to deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical RubisCO active site residues. When the C. tepidum gene encoding the RubisCO-like protein was disrupted, the resulting mutant strain displayed a pleiotropic phenotype with defects in photopigment content, photoautotrophic growth and carbon fixation rates, and sulfur metabolism. Most important, the mutant strain showed substantially enhanced accumulation of two oxidative stress proteins. These results indicated that the C. tepidum RubisCO-like protein might be involved in oxidative stress responses and/or sulfur metabolism. This protein might be an evolutional link to bona fide RubisCO and could serve as an important tool to analyze how the RubisCO active site developed.
Resumo:
Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus annuus) or the cyanobacterium Synechococcus PCC6301, along with a selectable marker. Three stable lines of transformants were regenerated that had altered rbcL genes. Those containing the rbcL gene for cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase produced mRNA but no large subunit protein or enzyme activity. Those tobacco plants expressing the sunflower large subunit synthesized a catalytically active hybrid form of the enzyme composed of sunflower large subunits and tobacco small subunits. A third line expressed a chimeric sunflower/tobacco large subunit arising from homologous recombination within the rbcL gene that had properties similar to the hybrid enzyme. This study demonstrated the feasibility of using a binary system in which different forms of the rbcL gene are constructed in a bacterial host and then introduced into a vector for homologous recombination in transformed chloroplasts to produce an active, chimeric enzyme in vivo.
Resumo:
The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.
Resumo:
The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 μmol quanta m−2 s−1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.
Resumo:
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.
Resumo:
The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.
Resumo:
Although it is well established that the plant host encodes and synthesizes the apoprotein for leghemoglobin in root nodules, the source of the heme moiety has been uncertain. We recently found that the transcript for coproporphyrinogen III oxidase, one of the later enzymes of heme synthesis, is highly elevated in soybean (Glycine max L.) nodules compared with roots. In this study we measured enzyme activity and carried out western-blot analysis and in situ hybridization of mRNA to investigate the levels during nodulation of the plant-specific coproporphyrinogen oxidase and four other enzymes of the pathway in both soybean and pea (Pisum sativum L.). We compared them with the activity found in leaves and uninfected roots. Our results demonstrate that all of these enzymes are elevated in the infected cells of nodules. Because these are the same cells that express apoleghemoglobin, the data strongly support a role for the plant in the synthesis of the heme moiety of leghemoglobin.
Resumo:
The pyrenoid is a proteinaceous structure found in the chloroplast of most unicellular algae. Various studies indicate that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in the pyrenoid, although the fraction of Rubisco localized there remains controversial. Estimates of the amount of Rubisco in the pyrenoid of Chlamydomonas reinhardtii range from 5% to nearly 100%. Using immunolocalization, the amount of Rubisco localized to the pyrenoid or to the chloroplast stroma was estimated for C. reinhardtii cells grown under different conditions. It was observed that the amount of Rubisco in the pyrenoid varied with growth condition; about 40% was in the pyrenoid when the cells were grown under elevated CO2 and about 90% with ambient CO2. In addition, it is likely that pyrenoidal Rubisco is active in CO2 fixation because in vitro activity measurements showed that most of the Rubisco must be active to account for CO2-fixation rates observed in whole cells. These results are consistent with the idea that the pyrenoid is the site of CO2 fixation in C. reinhardtii and other unicellular algae containing CO2-concentrating mechanisms.
Resumo:
We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.
Resumo:
A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot for pea S. Pea S in chimeric Rubisco amounted to 15 to 18% of all S, as judged by separation on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels from partially purified enzyme preparations and quantitation of silver-stained protein spots. The chimeric enzyme had 11 ± 1% fewer carbamylated sites and a 11 ± 1% lower carboxylase activity than wild-type Arabidopsis Rubisco. Whereas pea S expression, preprotein transport, and processing and assembly resulted in a stable holoenzyme, the chimeric enzyme was reproducibly catalytically less efficient. We suggest that the presence of, on average, one foreign S per holoenzyme is responsible for the altered activity. In addition, higher-plant Rubisco, unlike the cyanobacterial enzyme, seems to have evolved species-specific interactions between S and the large subunit protein that are involved in carbamylation of the active site.
Resumo:
To investigate the proposed molecular characteristics of sugar-mediated repression of photosynthetic genes during plant acclimation to elevated CO2, we examined the relationship between the accumulation and metabolism of nonstructural carbohydrates and changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression in leaves of Arabidopsis thaliana exposed to elevated CO2. Long-term growth of Arabidopsis at high CO2 (1000 μL L−1) resulted in a 2-fold increase in nonstructural carbohydrates, a large decrease in the expression of Rubisco protein and in the transcript of rbcL, the gene encoding the large subunit of Rubisco (approximately 35–40%), and an even greater decline in mRNA of rbcS, the gene encoding the small subunit (approximately 60%). This differential response of protein and mRNAs suggests that transcriptional/posttranscriptional processes and protein turnover may determine the final amount of leaf Rubisco protein at high CO2. Analysis of mRNA levels of individual rbcS genes indicated that reduction in total rbcS transcripts was caused by decreased expression of all four rbcS genes. Short-term transfer of Arabidopsis plants grown at ambient CO2 to high CO2 resulted in a decrease in total rbcS mRNA by d 6, whereas Rubisco content and rbcL mRNA decreased by d 9. Transfer to high CO2 reduced the maximum expression level of the primary rbcS genes (1A and, particularly, 3B) by limiting their normal pattern of accumulation through the night period. The decreased nighttime levels of rbcS mRNA were associated with a nocturnal increase in leaf hexoses. We suggest that prolonged nighttime hexose metabolism resulting from exposure to elevated CO2 affects rbcS transcript accumulation and, ultimately, the level of Rubisco protein.
Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis.
Resumo:
Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicylic acid with 18O2 suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation or benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[35S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes.
Resumo:
Two CO-isotope sensitive lines have been detected in the overtone region of the resonance Raman spectra of CO-bound hemeproteins. One line is assigned as the overtone of the Fe-CO stretching mode and is located in the 1000- to 1070-cm-1 region. The other line is found in the 1180- to 1210-cm-1 region and is assigned as a combination between a porphyrin mode, nu 7, and the Fe-CO stretching mode. The high intensities of these lines, which in the terminal oxidase class of proteins are of the same order as those of the fundamental stretching mode, indicate that the mechanism of enhancement for modes involving the Fe-CO moiety is different from that for the modes of the porphyrin macrocycle and call for reexamination of Raman theory of porphyrins as applied to axial ligands. The anharmonicity of the electronic potential function was evaluated, revealing that in the terminal oxidases the anharmonicity is greater than in the other heme proteins that were examined, suggesting a distinctive interaction of the bound CO with its distal environment in this family. Furthermore, the anharmonicity correlates with the frequency of the C-O stretching mode, demonstrating that both of these parameters are sensitive to the Fe-CO bond energy. The overtone and combination lines involving the bound CO promise to be additional probes of heme protein structural properties.
Resumo:
The O2 sensitivity of protein expression was assessed in hepatocytes from the western painted turtle. Anoxic cells consistently expressed proteins of 83.0, 70.4, 42.5, 35.3, and 16.1 kDa and suppressed proteins of 63.7, 48.2, 36.9, 29.5, and 17.7 kDa. Except for the 70.4-kDa protein, this pattern was absent during aerobic incubation with 2 mM NaCN, suggesting a specific requirement for O2. Aerobic incubation with Co2+ or Ni2+ increased expression of the 42.5-, 35.3-, and 16.1-kDa protein bands which was diminished with the heme synthesis inhibitor 4,6-dioxoheptanoic acid. Proteins suppressed in anoxia were also suppressed during aerobic incubation with Co2+ or Ni2+ but this was not relieved by 4,6-dioxoheptanoic acid. The anoxia- and Co2+/Ni2+-induced expression of the 42.5-, 35.3-, and 16.1-kDa protein bands was antagonized by 10% CO; however, with the exception of the 17.7-kDa protein, this was not found for any of the O2- or Co2+/Ni2+-suppressed proteins. Anoxia-induced proteins were compared with proteins expressed during heat shock. Heat shock proteins appeared at 90.2, 74.8, 63.4, 25, and 15.5 kDa and were of distinct molecular masses compared with the anoxia-induced proteins. These results suggest that O2-sensing mechanisms are active in the control of protein expression and suppression during anoxia and that, in the case of the 42.5-, 35.3-, 17.7-, and 16.1-kDa proteins, a conformational change in a ferro-heme protein is involved in transducing the O2 signal.