475 resultados para HAMSTER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new method for lysis of single cells in continuous flow, where cells are sequentially trapped, lysed and released in an automatic process. Using optimized frequencies, dielectrophoretic trapping allows exposing cells in a reproducible way to high electrical fields for long durations, thereby giving good control on the lysis parameters. In situ evaluation of cytosol extraction on single cells has been studied for Chinese hamster ovary (CHO) cells through out-diffusion of fluorescent molecules for different voltage amplitudes. A diffusion model is proposed to correlate this out-diffusion to the total area of the created pores, which is dependent on the potential drop across the cell membrane and enables evaluation of the total pore area in the membrane. The dielectrophoretic trapping is no longer effective after lysis because of the reduced conductivity inside the cells, leading to cell release. The trapping time is linked to the time required for cytosol extraction and can thus provide additional validation of the effective cytosol extraction for non-fluorescent cells. Furthermore, the application of one single voltage for both trapping and lysis provides a fully automatic process including cell trapping, lysis, and release, allowing operating the device in continuous flow without human intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durant le développement du système visuel, les cellules ganglionnaires de la rétine (CGRs) envoient des axones qui seront influencés par divers signaux guidant leur cône de croissance, permettant ainsi la navigation des axones vers leurs cibles terminales. Les endocannabinoïdes, des dérivés lipidiques activant les récepteurs aux cannabinoides (CB1 et CB2), sont présents de manière importante au cours du développement. Nous avons démontré que le récepteur CB2 est exprimé à différents points du tractus visuel durant le développement du hamster. L’injection d’agonistes et d’agonistes inverses pour le récepteur CB2 a modifié l’aire du cône de croissance et le nombre de filopodes présents à sa surface. De plus, l’injection d’un gradient d’agoniste du récepteur CB2 produit la répulsion du cône de croissance tandis qu’un analogue de l’AMPc (db-AMPc) produit son attraction. Les effets du récepteur CB2 sur le cône de croissance sont produits en modulant l’activité de la protéine kinase A(PKA), influençant la présence à la membrane cellulaire d’un récepteur à la nétrine-1 nommé Deleted in Colorectal Cancer (DCC). Notamment, pour que le récepteur CB2 puisse moduler le guidage du cône de croissance, la présence fonctionnelle du récepteur DCC est essentielle.. Suite à une injection intra-occulaire d’un agoniste inverse du récepteur CB2, nous avons remarqué une augmentation de la longueur des branches collatérales des axones rétiniens au niveau du LTN (noyau lateral terminal). Nous avons également remarqué une diminution de la ségrégation des projections ganglionnaires au niveau du dLGN, le noyau genouillé lateral dorsal, chez les animaux transgéniques cnr2-/-, ayant le gène codant pour le récepteur CB2 inactif. Nos données suggèrent l’implication des endocannabinoïdes et de leur récepteur CB2 dans la modulation des processus de navigation axonale et de ségrégation lors du développement du système visuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La moxonidine, un médicament antihypertenseur sympatholytique de type imidazolinique, agit au niveau de la médulla du tronc cérébral pour diminuer la pression artérielle, suite à l’activation sélective du récepteur aux imidazolines I1 (récepteur I1, aussi nommé nischarine). Traitement avec de la moxonidine prévient le développement de l’hypertrophie du ventricule gauche chez des rats hypertendus (SHR), associé à une diminution de la synthèse et une élévation transitoire de la fragmentation d’ADN, des effets antiprolifératifs et apoptotiques. Ces effets se présentent probablement chez les fibroblastes, car l’apoptose des cardiomyocytes pourrait détériorer la fonction cardiaque. Ces effets apparaissent aussi avec des doses non hypotensives de moxonidine, suggérant l’existence d’effets cardiaques directes. Le récepteur I1 se trouvé aussi dans les tissus cardiaques; son activation ex vivo par la moxonidine stimule la libération de l’ANP, ce qui montre que les récepteurs I1 cardiaques sont fonctionnels malgré l’absence de stimulation centrale. Sur la base de ces informations, en plus du i) rôle des peptides natriurétiques comme inhibiteurs de l’apoptose cardiaque et ii) des études qui lient le récepteur I1 avec la maintenance de la matrix extracellulaire, on propose que, à part les effets sympatholytiques centrales, les récepteurs I1 cardiaques peuvent contrôler la croissance-mort cellulaire. L’activation du récepteur I1 peut retarder la progression des cardiopathies vers la défaillance cardiaque, en inhibant des signaux mal adaptatifs de prolifération et apoptose. Des études ont été effectuées pour : 1. Explorer les effets in vivo sur la structure et la fonction cardiaque suite au traitement avec moxonidine chez le SHR et le hamster cardiomyopathique. 2. Définir les voies de signalisation impliquées dans les changements secondaires au traitement avec moxonidine, spécifiquement sur les marqueurs inflammatoires et les voies de signalisation régulant la croissance et la survie cellulaire (MAPK et Akt). 3. Explorer les effets in vitro de la surexpression et l’activation du récepteur I1 sur la survie cellulaire dans des cellules HEK293. 4. Rechercher la localisation, régulation et implication dans la croissance-mort cellulaire du récepteur I1 in vitro (cardiomyocytes et fibroblastes), en réponse aux stimuli associés au remodelage cardiaque : norépinephrine, cytokines (IL-1β, TNF-α) et oxydants (H2O2). Nos études démontrent que la moxonidine, en doses hypotensives et non-hypotensives, améliore la structure et la performance cardiaque chez le SHR par des mécanismes impliquant l’inhibition des cytokines et des voies de signalisation p38 MAPK et Akt. Chez le hamster cardiomyopathique, la moxonidine améliore la fonction cardiaque, module la réponse inflammatoire/anti-inflammatoire et atténue la mort cellulaire et la fibrose cardiaque. Les cellules HEK293 surexprimant la nischarine survivent et prolifèrent plus en réponse à la moxonidine; cet effet est associé à l’inhibition des voies ERK, JNK et p38 MAPK. La surexpression de la nischarine protège aussi de la mort cellulaire induite par le TNF-α, l’IL-1β et le H2O2. En outre, le récepteur I1 s’exprime dans les cardiomyocytes et fibroblastes, son activation inhibe la mort des cardiomyocytes et la prolifération des fibroblastes induite par la norépinephrine, par des effets différentiels sur les MAPK et l’Akt. Dans des conditions inflammatoires, la moxonidine/récepteur aux imidazolines I1 protège les cardiomyocytes et facilite l’élimination des myofibroblastes par des effets contraires sur JNK, p38 MAPK et iNOS. Ces études démontrent le potentiel du récepteur I1/nischarine comme cible anti-hypertrophique et anti-fibrose à niveau cardiaque. L’identification des mécanismes cardioprotecteurs de la nischarine peut amener au développement des traitements basés sur la surexpression de la nischarine chez des patients avec hypertrophie ventriculaire. Finalement, même si l’effet antihypertenseur des agonistes du récepteur I1 centraux est salutaire, le développement de nouveaux agonistes cardiosélectifs du récepteur I1 pourrait donner des bénéfices additionnels chez des patients non hypertendus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a system to hunt and reuse special gene integration sites that allow for high and stable gene expression. A vector, named pRGFP8, was constructed. The plasmid pRGFP8 contains a reporter gene, gfp2 and two extraneous DNA fragments. The gene gfp2 makes it possible to screen the high expression regions on the chromosome. The extraneous DNA fragments can help to create the unique loci on the chromosome and increase the gene targeting frequency by increasing the homology. After transfection into Chinese hamster ovary cells (CHO) cells, the linearized pRGFP8 can integrate into the chromosome of the host cells and form the unique sites. With FACS, 90 millions transfected cells were sorted and the cells with strongest GFP expression were isolated, and then 8 stable high expression GFP CHO cell lines were selected as candidates for the new host cell. Taking the unique site created by pRGFP8 on the chromosome in the new host cells as a targeting locus, the gfp2 gene was replaced with the gene of interest, human ifngamma, by transfecting the targeting plasmid pRIH-IFN. Then using FACS, the cells with the dimmest GFP fluorescence were selected. These cells showed they had strong abilities to produce the protein of interest, IFN-gamma. During the gene targeting experiment, we found there is positive correlation between the fluorescence density of the GFP CHO host cells and the specific production rate of IFN-gamma. This result shows that the strategy in our expression system is correct: the production of the interesting protein increases with the increase fluorescence of the GFP host cells. This system, the new host cell lines and the targeting vector, can be utilized for highly expressing the gene of interest. More importantly, by using FACS, we can fully screen all the transfected cells, which can reduce the chances of losing the best cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anexos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D-2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[S-35]thio) triphosphate ([S-35]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [S-35]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [S-35]GTPgammaS, increasing GDP decreased the [S-35]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [S-35]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [S-35]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [S-35]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [S-35]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [S-35]GTPgammaS to the G protein. At the higher [S-35]GTPgammaS concentration, for full agonists, [S-35]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes amaranth`s protein cholesterol-lowering effect and investigates its mechanisms hypercholesterolaemia was induced in male hamsters through diet rich in casein (300 g/kg diet) containing regular levels of cholesterol (0.5 kg/g) fed during 3 weeks. Animals were divided into three groups and fed ad libitum diets for 4 weeks containing as the sole source of protein: casein (control), amaranth protein isolate or, casein + amaranth protein isolate. Plasma concentrations of cholesterol and triacylglycerols were measured at four different points: at the beginning of the study. after hypercholesterolaemia was induced, in the first week and then at the end of the experimental diet period. The reduction of the total plasma cholesterol concentration at the end of experimental period for animals fed on diets containing amaranth protein isolate pure and with casein were 27% (P < 0.05) and 48% (P < 0.05). respectively, being the non-HDL fractions the most affected. Digestibility of protein as well as excretion of cholesterol and bile acid, were investigated as the possible mechanisms for this significant hypocholesterolaemic effect. Cholesterol excretion was related to the hypocholesterolaemia but could not explain all the observed reduction. Our findings suggest that amaranth protein has a metabolic effect on endogenous cholesterol metabolism. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary, nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide Urocortin 3, or glutamic acid decarboxylase rnRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir ill the MEA and PMV comparing fed and fasted animals. Ill the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, Urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 rnRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine-and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Very little is known of the diversity and expression of virulence factors of serotypes of Aggregatibacter actinomycetemcomitans. Toxic activity on Chinese hamster ovary (CHO) cells and cdt and ltx genotyping were evaluated in A. actinomycetemcomitans serotypes. Methods: Forty-one A. actinomycetemcomitans isolates were analysed for CHO cell growth inhibition. Genotyping was performed by polymerase chain reactions specific to the ltx promoter region, serotype-specific and cdt region and by sequencing of cdtB. Results: cdtABC was detected in 40 strains. Analysis of the cdtA upstream region revealed 10 cdt genotypes. Toxicity to CHO cells was detected for 92.7% of the isolates; however, no correlation between the toxic activity and the cdt genotype was detected. Serotype c was more prevalent among Brazilian samples (68.0%). Four serotype b isolates from subjects with aggressive periodontitis were associated with high leukotoxin production and exhibited moderate to strong toxic activity in CHO cells, but were classified in different cdt genotypes. High levels of toxicity in CHO cells were not associated with a particular serotype; 57.1% of serotype a isolates presented low toxicity to CHO cells whereas the highly toxic strains belonged to serotypes b and c. Sequencing of cdtB revealed a single nucleotide polymorphism of amino acid 281 but this was not related to the toxic activity in CHO cells. Conclusion: Differences in prevalence of the low and highly cytotoxic strains among serotypes reinforce the hypothesis that serotype b and c isolates of A. actinomycetemcomitans are more virulent than serotype a strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although there is accumulated evidence of a role for Notch in the developing lung, it is still unclear how disruption of Notch signaling affects lung progenitor cell fate and differentiation events in the airway epithelium. To address this issue, we inactivated Notch signaling conditionally in the endoderm using a Shh-Cre deleter mouse line and mice carrying floxed alleles of the Pofut1 gene, which encodes an O-fucosyltransferase essential for Notch-ligand binding. We also took the same conditional approach to inactivate expression of Rbpjk, which encodes the transcriptional effector of canonical Notch signaling. Strikingly, these mutants showed an almost identical lung phenotype characterized by an absence of secretory Clara cells without evidence of cell death, and showed airways populated essentially by ciliated cells, with an increase in neuroendocrine cells. This phenotype could be further replicated in cultured wild-type lungs by disrupting Notch signaling with a gamma-secretase inhibitor. Our data suggest that Notch acts when commitment to a ciliated or non-ciliated cell fate occurs in proximal progenitors, silencing the ciliated program in the cells that will continue to expand and differentiate into secretory cells. This mechanism may be crucial to define the balance of differentiated cell profiles in different generations of the developing airways. It might also be relevant to mediate the metaplastic changes in the respiratory epithelium that occur in pathological conditions, such as asthma and chronic obstructive pulmonary disease.