967 resultados para Groundwater Flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shipping list no.: 87-323-P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of rainy climate, glaciolacustrine clays, and steep topography of the Puget Lowland creates slope stability issues for the regional population. Several glaciolacustrine deposits of laminated silt and clay of different ages contribute to the likelihood of slope failure. The glaciolacustrine deposits are generally wet, range in thickness from absent to >30m, and consist of laminated silt and clay with sand interbeds at the tops and bottoms, sandy laminae throughout the deposits, occasional dropstones and shear zones. The glaciolacustrine deposits destabilize slopes by 1) impeding groundwater flow percolating through overlying glacial outwash sediments, 2) having sandy laminae that lower strength by increasing pore pressure during wet seasons, and 3) increasing the potential for block-style failure because of secondary groundwater pathways such as laminae and vertical fractures. Eight clay samples from six known landslide deposits were analyzed in this study for their mineralogy, clay fraction and strength characteristics. The mineralogy was determined using X-ray Diffractometry (XRD) which revealed an identical mineralogic suite among all eight samples consisting of chlorite, illite and smectite. Nonclay minerals appearing in the X-ray diffractogram include amphibole and plagioclase after removal of abundant quartz grains. Hydrometer tests yielded clay-size fraction percentages of the samples ranging from 10% to 90%, and ring shear tests showed that the angle of residual shear resistance (phi_r) ranged from 11° to 31°. Atterberg limits of the samples were found to have liquid limits ranging from 33 to 83, with plastic limits ranging from 25 to 35 and plasticity indices ranging from 6 to 48. The results of the hydrometer and residual shear strength tests suggest that phi_r varies inversely with the clay-size fraction, but that this relationship was not consistent among all eight samples. The nature of the XRD analysis only revealed the identity of the clay minerals present in the samples, and provided no quantitative information. Thus, the extent to which the mineralogy influenced the strength variability among the samples cannot be determined given that the mineral assemblages are identical. Additional samples from different locations within each deposit along with quantitative compositional analyses would be necessary to properly account for the observed strength variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seawater intrusion in coastal agricultural areas due to groundwater abstraction is a major environmental problem along the northeastern coast of Australia. Management options are being explored using numerical modelling, however, questions remain concerning the appropriate level of sophistication in models, choice of seaward boundary conditions, and how to accommodate heterogeneity and data uncertainty. The choice of seaward boundary condition is important since it affects the amount of salt transported into the aquifers and forms the focus of the present study. The impact of this boundary condition is illustrated for the seawater-intrusion problem in the Gooburrum aquifers, which occur within Tertiary sedimentary strata. A two-dimensional variable-density groundwater and solute-transport model was constructed using the computer code 2DFEMFAT (Cheng et al. 1998). The code was tested against an experiment for a steady-state freshwater-saltwater interface and against the Elder (Elder 1967) free-convection problem. Numerical simulations show that the imposition of the commonly-used equivalent hydrostatic freshwater heads, combined with a constant salt concentration at the seaward boundary, results in overestimated seawater intrusion in the lower Gooburrum aquifer. Since the imposition of this boundary condition allows water flow across the boundary, which subsequently takes salt into the aquifer, a careful check is essential to estimate whether too much mass of salt is introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free surface flow of groundwater in aquifers has been studied since the early 1960s. Previous investigations have been based on the Boussinesq equation, derived from the non-linear kinematic boundary condition. In fact, the Boussinesq equation is the zeroth-order equation in the shallow-water expansion. A key assumption in this expansion is that the mean thickness of the aquifer is small compared with a reference length, normally taken to be the linear decay length. In this study, we re-examine the expansion scheme for free surface groundwater flows, and propose a new expansion wherein the shallow-water assumption is replaced by a steepness assumption. A comparison with experimental data shows that the new model provides a better prediction of water table levels than the conventional shallow-water expansion. The applicable ranges of the two expansions are exhibited. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundwater-dependent riparian biota is known to be sensitive to changes in soil and groundwater salinity in estuarine systems. The groundwater flow and salinity behaviour in a phreatic aquifer adjoining a partially penetrating, tidal. estuary is investigated through two-dimensional numerical experiments for a lateral cross-section, which explore the influence of factors, such as aquifer and soil materials, tidal amptitudes, and regional groundwater hydraulic gradients. The density contrast between estuarine water and the fresh groundwater drives saltwater penetration of the aquifer even in the case of a marked groundwater hydraulic gradient towards the estuary. We show that tidal fluctuations in estuaries can significantly affect the groundwater salinity distribution in adjacent density-stratified phreatic aquifers. This has consequences for the expected distribution of salinity-sensitive biota in the hyporheic zone as well as vegetation and fauna dependent on water in the riparian soil and aquifer. The shape of the dense saltwater wedge propagating into the adjacent groundwater system is also modified by the estuarine tidal signal, although this effect appears to have only minor influence on the maximum distance penetrated into the aquifer (i.e., location of the 'toe' of the wedge). Tide-induced changes to riparian groundwater salinity are advection-driven, as evidenced by the modified time-averaged groundwater flow dynamics. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry. Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO 2-enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientists’ understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.