925 resultados para Grounded chiral slabs
Resumo:
Some 1R,4R-2-(4-phenylbenzylidene)-p-menthane-3-one derivatives containing the ether or ester linking group between benzene rings of the arylidene fragment have been studied as chiral dopants in ferroelectric liquid crystal systems based on the eutectic mixture (1:1) of two phenylbenzoate derivatives CmH2m+1OC6H4COOC6 H4OCnH2n+1 (n = 6; m = 8, 10). The ferroelectric properties of these compositions (spontaneous polarization, rotation viscosity, smectic tilt angle as well as quantitative characteristics of their concentration dependences) were compared with those for systems including chiral dopants containing no linking group. Ferroelectric parameters of the induced ferroelectric compositions studied have been shown to depend essentially on the presence of the linking group between benzene rings and its nature as well as on the number of the benzene rings in the rigid molecular core of the chiral dopants used. For all ferroelectric liquid crystal systems studied, the influence of the chiral dopants on the thermal stability of N*, SmA and SmC* mesophases has been quantified. The influence of the linking group nature in the dopant molecules on the characteristics of the systems studied is discussed taking into account results of the conformational analysis carried out by the semi-empirical AM1 and PM3 methods.
Resumo:
New chiral compounds 3R-methylcyclohexanone derivatives were synthesized. These compounds were revealed to exhibit the mesomorphic behavior within rather wide temperature ranges. Types of formed mesophases and phase transition temperatures were determined by polarizing microscopy, differential scanning calorimetry and small angle scattering of X-ray. Mesomorphic properties of the new chiral compounds were compared with those for the chiral 2-arylidene derivatives of 3R,6R-3-methyl-6-isopropylcyclohexanone (d-isomenthone) studied earlier. Distinctions between these two types of compounds in an ability to form mesophases and also in twisting properties as chiral dopants in induced cholesteric mesophases are considered.
Resumo:
The flexoelectric behaviour of a hypertwisted chiral nematic bimesogenic liquid crystal is presented. Through detailed electro-optic measurements, with particular emphasis on the switching properties, we demonstrate remarkably high optical axis tilt angles. The material studied possessed a room temperature nematic phase and aligned easily on cooling under the application of a moderate electric field. Switching times of the order of 500 μs and contrast ratios of 90:1 are readily achieved. The tilt angles, measured using the rotating analyser technique, were found to be practically temperature independent and linear with the applied field. Tilt angles of 22.5° were obtained with moderate applied fields of 9.4 V/μm whilst fields of 25 V/μm yielded tilt angles of 45°. We believe these are the highest tilt angles ever recorded for such fields. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
In order to develop materials that exhibit enhanced flexoelectric switching in the chiral nematic phase we have identified mesogenic units that display inherently strong flexoelectric coupling capabilities. Here we examine the oxycyanobiphenyl (OCB) moiety: homologues from the nOCB series exhibit significant electro-optic switching effects when doped with a highly chiral additive. Here we have examined lower dielectric anisotropy materials, since they allow the flexoelectric response to be extended to high field amplitudes. We show that dielectric coupling strength can be low in symmetric bimesogenic molecules. The flexoelectric response of such a molecular structure is tested by doping a homologue from the series CBOnOCB with a chiral additive: very significantly we find that the optic axis is rotated through 2φ=45° in <50 μs on reversing the polarity of the field (amplitude E=±6 V μm-1). Subsequently we have synthesized room temperature chiral nematic materials that exhibit 2φ≥90° at E≈10 V μm-1. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
New 2-arylidene-p-menthane-3-ones containing the ether bridging group in the arylidene fragment have been synthesized and studied as chiral dopants in ferroelectric liquid crystal mixtures. The ferroelectric properties of these compositions were compared with those for compositions including chiral dopants that do not contain any bridging group. The influence of bridging group and terminal alkyl substituent length in the dopant molecule on the ferroelectric parameters of systems studied is discussed. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.
Resumo:
A comparative study of the insulation efficiencies of expanded polystyrene slabs and multi-layer gunny fabric in long distance transportation of fresh iced fish was made. Used plywood boxes (second hand tea chests) were employed as containers and the experiments conducted between Kakinada and Calcutta. All the three insulants tried, namely, 25.4 mm thick expanded polystyrene slab, four and two layer gunny (jute) fabric, all sealed in 150 gauge polythene sheets, showed comparable insulation efficiencies, considering total bacterial counts, organoleptic qualities and TMA and TVN values of the transported fish as parameters.
Resumo:
We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched “on” and “off” reversibly in 600 µs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times.
Resumo:
We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched on and off reversibly in 600 μs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times. © 2011 American Institute of Physics.
Resumo:
Using a chiral nematic liquid crystal with a negative dielectric anisotropy, it is possible to switch between band-edge laser emission and random laser emission with an electric field. At low frequencies (1 kHz), random laser emission is observed as a result of scattering due to electro-hydrodynamic instabilities. However, band-edge laser emission is found to occur at higher frequencies (5 kHz), where the helix is stabilized due to dielectric coupling. These results demonstrate a method by which the linewidth of the laser source can be readily controlled externally (from 4 nm to 0.5 nm) using electric fields. © 2012 American Institute of Physics.