985 resultados para Grid Services
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
RESUMO - A consciência de uma necessidade clara em rentabilizar a capacidade instalada e os meios tecnológicos e humanos disponíveis no Bloco Operatório e face ao imperativo de um cabal desempenho e de uma adequada efectividade nestes serviços levou-nos à realização deste estudo. Objectivos: O trabalho de projecto centrou-se em quatro objectivos concretos: Elaboração de uma grelha de observação de Modelos de Gestão de Bloco Operatório; Observação de seis Modelos de Gestão de Blocos Operatórios em experiências nacionais e in-loco, de acordo com a grelha de observação; Avaliação da qualidade gestionária na amostra seleccionada à luz dos modelos existentes; Criação de uma grelha de indicadores para a monitorização e avaliação do Bloco Operatório. Metodologia: Na elaboração da grelha de observação dos Blocos Operatórios recorremos a um grupo de peritos, à bibliografia disponível e à informação recolhida em entrevistas. Aplicámos a grelha de observação aos seis Blocos Operatórios e analisámos as informações referentes a cada modelo com a finalidade de encontrar os pontos-chave que mais se destacavam em cada um deles. Para a elaboração da grelha de indicadores de monitorização do Bloco Operatório realizámos uma reunião recorrendo à técnica de grupo nominal para encontrar o nível de consenso entre os peritos. Resultados: Criámos uma grelha de observação de Modelos de Gestão de Bloco Operatório que permite comparar as características de gestão. Esta grelha foi aplicada a seis Blocos Operatórios o que permitiu destacar como elementos principais e de diferenciação: o sistema de incentivos implementado; o sistema informático, de comunicação entre os serviços e de débito directo dos gastos; a existência de uma equipa de gestão de Bloco Operatório e de Gestão de Risco; a importância de um planeamento cirúrgico semanal e da existência de um regulamento do Bloco Operatório. Desenhámos um painel de indicadores para uma monitorização do Bloco Operatório, de onde destacamos: tempo médio de paragem por razões técnicas, tempo médio de paragem por razões operacionais, tempo médio por equipa e tempo médio por procedimento. Considerações finais: Os Blocos Operatórios devem ponderar a existência das componentes mais importantes dos Modelos, bem como recolher exaustivamente indicadores de monitorização. A investigação futura deverá debruçar-se sobre a relação entre os indicadores de monitorização e os Modelos de Gestão, recorrendo à técnicas de benchmarking. -------------------ABSTRACT - This study was driven by the need to optimise available capacity, technology and human resources in the Operating Room and to address the corresponding goals of adequate performance and effectiveness. Objectives: This project focuses on four specific objectives: development of an observation grid of operating room management models; in-loco observation and documentation of six national operating room, according to the grid; assess the quality of management in the selected sample relative to existing management models; create a set of indicators for monitoring and evaluating operating rooms. Methodology: The design of the observation grid was based on experts’ consultation, a literature survey and information gathered in various interviews. The observation grid was applied to six operating rooms and the information for each management model was analysed in order to find its key characteristics. We used the Nominal Group Technique in order to develop a set of indicators for monitoring and evaluating operating rooms. Results: An observation grid was created for operating rooms management models, which allowed comparing management characteristics. This grid was applied to six operating rooms allowing disentangle its main features and differentiating characteristics: implementation of incentive systems; IT systems including information flow between services; inventory and expense management; existence of a management team and effective risk management; importance of weekly planning and regulations. We designed a set control indicators, whose major characteristics are the following: the average down time due to technical reasons, the average down time due to operational reasons, the average time per team and the average time per procedure. Final Conclusions: Operating rooms should consider the most relevant characteristics of management models and collect exhaustive information on control indicators. Future research should be devoted to assessing the operating room performance according to management models, using control indicators and benchmarking techniques.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Intelligent electrical grids can be considered as the next generation of electrical energy transportation. The enormous potential leads to worldwide focus of research on the technology of smart grids. This paper aims to present a review of the Brazilian electricity sector in context with the integration of communication technologies for smart grids. The work gives an overview of the generation, transmission and distribution of electrical energy in the Brazil and a brief summary of the current electricity market. Smart grid technologies are introduced and the requirements for the Brazilian power system are pointed out. Various technologies for communication within an intelligent network are presented and their characteristics, advantages and disadvantages are compared to the Brazilian conditions. In addition, a summary is given of current pilot projects for Smart Grid technologies within Brazil, as well as a presentation of individual selected projects.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.
Resumo:
The Smart Grid environment allows the integration of resources of small and medium players through the use of Demand Response programs. Despite the clear advantages for the grid, the integration of consumers must be carefully done. This paper proposes a system which simulates small and medium players. The system is essential to produce tests and studies about the active participation of small and medium players in the Smart Grid environment. When comparing to similar systems, the advantages comprise the capability to deal with three types of loads – virtual, contextual and real. It can have several loads optimization modules and it can run in real time. The use of modules and the dynamic configuration of the player results in a system which can represent different players in an easy and independent way. This paper describes the system and all its capabilities.