971 resultados para Gravel and aggregates
Resumo:
During the drilling of oil and natural gas are generated solid waste, liquid and gaseous. These solid fragments, which are known as cuttings, are carried to the surface through the drilling fluid. Furthermore, this fluid serves to cool the bit, keeping the internal pressure of the well, and others. This solid residue is very polluting, because it has incorporated beyond the drilling fluid, which has several chemical additives harmful to the environment, some heavy metals that are harmful to the environment, such as lead. To minimize the residue generated, are currently being studied numerous techniques to mitigate the problems that such waste can cause to the environment, like addition of cuttings in the composition of soil cement brick masonry construction, addition of cuttings on the clay matrix for the manufacture of solid masonry bricks and ceramic blocks and coprocessing of the cuttings in cement. So, the main objective of this work is the incorporation of cuttings drilling of oil wells, the cement slurry used in the cementing operation of the well. This cuttings used in this study, arising from the formation Pendências, was milled and separated in a sieve of 100 mesh. After grinding had a mean particle sike in order of 86 mm and crystal structure containing phases of quartz and calcite type, characteristic of the Portland cement. Were formulated and prepared slurries of cement with density 13 lb / gal, containing different concentrations of gravel, and realized characterization tests API SPEC 10A and RP 10B. Free water tests showed values lower than 5.9% and the rheological model that best described the behavior of the mixtures was the power. The results of compressive strength (10.3 MPa) and stability (Dr <0.5 lb / gal) had values within the set of operational procedures. Thus, the gravel from the drilling operation, may be used as binders in addition to Portland cement oil wells, in order to reuse this waste and reduce the cost of the cement paste.
Resumo:
This study was developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin; this tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grainsize, texture, mineral composition, carbonate content, and organic matter. Cruise 1 (C1) was carried prior to drilling, while Cruise 2(C2) and 3 (C3) respectivelly 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm, and 0-10 cm layers. The results show that sedimentary cover around the well is poor to very poorly sorted, with the particle size predominantly in the medium to coarse sand fraction, followed by gravel and mud. The content of calcium carbonate is greater than 96%, associated to bioclastic sediments, and the content of organic matter is less than 12%. Only minor sedimentological variations occured in the area affected by drilling operations. Mainly observed during the second cruise, in terms of a change in grain size distribution associated to an increase in siliciclastic content, This impact occurred in the most surficial sediment (0-2 cm), in the radial closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, one year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity, and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.
Resumo:
This study was developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin; this tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grainsize, texture, mineral composition, carbonate content, and organic matter. Cruise 1 (C1) was carried prior to drilling, while Cruise 2(C2) and 3 (C3) respectivelly 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm, and 0-10 cm layers. The results show that sedimentary cover around the well is poor to very poorly sorted, with the particle size predominantly in the medium to coarse sand fraction, followed by gravel and mud. The content of calcium carbonate is greater than 96%, associated to bioclastic sediments, and the content of organic matter is less than 12%. Only minor sedimentological variations occured in the area affected by drilling operations. Mainly observed during the second cruise, in terms of a change in grain size distribution associated to an increase in siliciclastic content, This impact occurred in the most surficial sediment (0-2 cm), in the radial closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, one year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity, and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.
Resumo:
O trabalho tem a proposta de analisar os desdobramentos do teatro musical brasileiro desde a primeira encenação em território nacional de adaptações de espetáculos do Teatro de Revista, gênero originário da França, até as superproduções musicais realizadas nos últimos 16 anos de adaptações de espetáculos americanos. O panorama histórico e analítico será estudado, com ênfase no teatro musical que se utiliza de elementos midiatizados para estar inserido em uma sociedade em que a produção cultural é vista como internacionalizada e mercantilizada. Como forma de marketing, os produtores utilizam-se da notoriedade midiática presente em formatos estrangeiros já consagrados, adaptações renomadas e bem aceitas pelo público, além da fama de celebridades que são escaladas para os musicais. Tudo para a conquista de um patrocinador que, por sua vez, acaba fazendo exigências que interferem de maneira decisiva na montagem dos espetáculos. Em meio a um processo onde são tantos os direcionamentos pré-estabelecidos por patrocinadores, onde se encontra o genuíno teatro musical brasileiro? A pesquisa abrange o ineditismo da presença de temáticas nacionais em formatos estrangeiros e agrega o conjunto de fatores que possibilitam que um roteiro de musical saia do papel e adentre os palcos, tais como as políticas públicas de incentivos fiscais; a ligação de empresas patrocinadoras e suas marcas a musicais; o fato de que, mesmo as produções sendo pagas por dinheiro público, possuírem ingressos que não são a preços populares. Para auxiliar nas conjecturas a serem formadas, será utilizada uma metodologia histórico-descritiva com foco na relação do tema com elementos notórios na mídia, como os artistas e obras a serem adaptadas no palco.
Resumo:
O consumo energético nas indústrias é algo que tem de ser monitorizado, avaliado e orientado, visando a eficiência energética e sustentabilidade, de modo não só a reduzir o consumo de combustíveis fósseis, mas também a auxiliar a redução da fatura económica. O presente trabalho teve como principal objetivo uma análise energética, e incorpora a caracterização térmica dos materiais utilizados na indústria de produção de massas asfálticas, e o desenvolvimento de um modelo térmico que preveja o comportamento dos mesmos, na produção de massas asfálticas, em central fixa com incorporação de material reciclado a frio. Primariamente o estudo passou pela análise dos consumos energéticos da instalação, caracterizando-a segundo o Decretolei 71/2008, de 15 de Abril, tendo-se constatado, que o consumo de gás natural se evidencia como uma das principais fontes de energia e um dos principais responsáveis pela emissão de GEE (Gases de Efeito de Estufa). Posteriormente o consumo de gás natural foi distribuído pelos pontos consumidores, o cilindro exsicador e a caldeira de aquecimento de óleo térmico. O cilindro exsicador é o principal consumidor energético, com um consumo próximo de 90% do gás natural total. Seguidamente foi realizada uma caracterização dos materiais utilizados na produção de massas asfálticas segundo o DSC (Differential Scanning Calorimetry). Os materiais analisados foram o reciclado/fresado, o calcário, o pó de calcário, o seixo, a areia e o granito. Os resultados dos materiais secos demonstraram que o material com maior cp (calor específico) foi a areia e o menor o calcário. Nos resultados dos materiais saturados observou-se que o seixo apresenta maior facilidade de remoção de humidade e o reciclado/fresado apresenta menor. Por último, foi realizado um modelo térmico com utilização de um balanço mássico e energético ao processo de secagem e sobreaquecimento dos agregados no cilindro exsicador. Conclui-se que as principais influências no consumo de gás natural, na produção de massas asfálticas com inclusão de material reciclado a frio, são: a necessidade energética de aquecimento em função da temperatura a obter, e a energia necessária para remover o conteúdo em humidade presente nos diversos materiais (fresado e agregados).
Resumo:
The human brain stores, integrates, and transmits information recurring to millions of neurons, interconnected by countless synapses. Though neurons communicate through chemical signaling, information is coded and conducted in the form of electrical signals. Neuroelectrophysiology focus on the study of this type of signaling. Both intra and extracellular approaches are used in research, but none holds as much potential in high-throughput screening and drug discovery, as extracellular recordings using multielectrode arrays (MEAs). MEAs measure neuronal activity, both in vitro and in vivo. Their key advantage is the capability to record electrical activity at multiple sites simultaneously. Alzheimer’s disease (AD) is the most common neurodegenerative disease and one of the leading causes of death worldwide. It is characterized by neurofibrillar tangles and aggregates of amyloid-β (Aβ) peptides, which lead to the loss of synapses and ultimately neuronal death. Currently, there is no cure and the drugs available can only delay its progression. In vitro MEA assays enable rapid screening of neuroprotective and neuroharming compounds. Therefore, MEA recordings are of great use in both AD basic and clinical research. The main aim of this thesis was to optimize the formation of SH-SY5Y neuronal networks on MEAs. These can be extremely useful for facilities that do not have access to primary neuronal cultures, but can also save resources and facilitate obtaining faster high-throughput results to those that do. Adhesion-mediating compounds proved to impact cell morphology, viability and exhibition of spontaneous electrical activity. Moreover, SH-SY5Y cells were successfully differentiated and demonstrated acute effects on neuronal function after Aβ addition. This effect on electrical signaling was dependent on Aβ oligomers concentration. The results here presented allow us to conclude that the SH-SY5Y cell line can be successfully differentiated in properly coated MEAs and be used for assessing acute Aβ effects on neuronal signaling.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10-1000nm and aggregates of 1-10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane. © 2015 Elsevier Ltd.
Resumo:
Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days
Resumo:
Background: Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. Methods: Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. Results: We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in ‘energised’ negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. Conclusions: While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required. General significance: If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies.
Resumo:
The textural and compositional characteristics of the 400 m sequence of Pleistocene wackestones and packstones intersected at Ocean Drilling Program (ODP) Site 820 reflect deposition controlled by fluctuations in sea-level, and by variations in the rate of sediment supply. The development of an effective reefal barrier adjacent to Site 820, between 760 k.y. and 1.01 Ma, resulted in a marked reduction in sediment accumulation rates on the central Great Barrier Reef outermost shelf and upper slope. This marked change corresponds with the transition from sigmoidal prograding seismic geometry in the lower 254 m of the sequence, to aggradational geometry in the top 146 m. The reduction in the rate of sediment accumulation that followed development of the reefal barrier also caused a fundamental change in the way in which fluctuations in sea-level controlled sediment deposition. In the lower, progradational portion of the sequence, sea-level cyclicity is represented by superimposed coarsening-upward cycles. Although moderately calcareous throughout (mostly 35%-75% CaCO3), the depositional system acted in a similar manner to siliciclastic shelf depositional systems. Relative sea-level rises resulted in deposition of more condensed, less calcareous, fine, muddy wackestones at the base of each cycle. Sea-level highstands resulted in increased sedimentation rates and greater influx of coarse bioclastic material. Continued high rates of sedimentation of both coarse bioclastic material and mixed carbonate and terrigenous mud marked falling and low sea-levels. This lower part of the sequence therefore is dominated by coarse packstones, with only thin wackestone intervals representing transgressions. In contrast, sea-level fluctuations following formation of an effective reefal barrier produced a markedly different sedimentary record. The more slowly deposited aggradational sequence is characterized by discrete thin interbeds of relatively coarse packstone within a predominantly fine wackestone sequence. These thin packstone beds resulted from relatively low sedimentation rates during falling and low sea-levels, with much higher rates of muddy sediment accumulation during rising and high sea-levels. The transition from progradational to aggradational sequence geometry therefore corresponds to a transition from a "siliciclastic-type" to a "carbonate-type" depositional system.
Resumo:
Construction and Demolition Waste (CDW) represents. about 50% of the total Brazilian municipal solid waste: thus, recycling represents huge benefits both in environmental and economic perspectives. Herein, the chemical characterization results of three samples from two different recycling plants from the State of Sao Paulo is prevented. The results demonstrated that the visual classification into grey and red is not related to the chemical composition but mostly to the grain size fraction. The chemical composition of the CDW varies according to the content of cement paste, natural aggregates (quartz sand or granite), red ceramic and clay. Furthermore, the production of recycled concrete aggregates requires two crushing stages to meet the technical standards. The sand fraction (below 4.8 mm) presents high grades of SiO(2), which indicates the liberation of cement paste to fines (< 0.15 mm). The fines have a great potential to be used in the cement industry.
Resumo:
Two Gram-positive, non-motile, non-spore-forming, strictly aerobic, pigmented cocci, strains Ben 107(T) and Ben 108(T), growing in aggregates were isolated from activated sludge samples by micromanipulation. Both possessed the rare type A3 gamma' peptidoglycan. Major menaquinones of strain Ben 107(T) were MK-9(H-4) and MK-7(H-2), and the main cellular fatty acid was 12-methyltetradecanoic acid (ai-C-15:0). In strain Ben 108(T), MK-9(H-4), MK-9(H-2) and MK-7(H-4) were the menaquinones and again the main fatty acid was 12-methyltetradecanoic acid (ai-C-15:0). Polar lipids in both strains consisted of phosphatidyl inositol, phosphatidyl glycerol and diphosphatidyl glycerol with two other unidentified glycolipids and phospholipids also present in both. These data, together with the 16S rDNA sequence data, suggest that strain Ben 107(T) belongs to the genus Friedmanniella which presently includes a single recently described species, Friedmanniella antarctica. Although the taxonomic status of strain Ben 108(T) is far less certain, on the basis of its 16S rRNA sequence it is also adjudged to be best placed in the genus Friedmanniella, The chemotaxonomic characteristics and DNA-DNA hybridization data support the view that Ben 107(T) and Ben 108(T) are novel species of the genus Friedmanniella. Hence, it is proposed that strain Ben 107(T) (=ACM 5121(T)) is named as Friedmanniella spumicola sp. nov. and strain Ben 108(T) (=ACM 5120(T)) as Friedmanniella capsulata sp. nov.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.
Resumo:
Construction and demolition waste (CDW) represents around 31% of all waste produced in the European Union. It is today acknowledged that the consumption of raw materials in the construction industry is a non-sustainable activity. It is thus necessary to reduce this consumption, and the volume of CDW dumped, by using this waste as a source of raw materials for the production of recycled aggregates. One potential use of these aggregates is their incorporation in reinforced concrete as a replacement of natural aggregates. A concrete that incorporates these aggregates and still performs well requires them to be fully characterized so that their behaviour within the concrete can be predicted. Coarse recycled aggregates have been studied quite thoroughly, because they are simpler to reintroduce in the market as a by-product, and so has the performance of concrete made with them. This paper describes the main results of research designed to characterize the physical and chemical properties of fine recycled aggregates for concrete production and their relationship with mineralogical composition and preprocessing. The constraints of the incorporation of fine aggregates in reinforced concrete are discussed. It is shown that, unless a developed processing diagram is used, this application is not feasible. (C) 2013 Elsevier Ltd. All rights reserved.