867 resultados para Graph-based method
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.
Resumo:
Objective: Images on food and dietary supplement packaging might lead people to infer (appropriately or inappropriately) certain health benefits of those products. Research on this issue largely involves direct questions, which could (a) elicit inferences that would not be made unprompted, and (b) fail to capture inferences made implicitly. Using a novel memory-based method, in the present research, we explored whether packaging imagery elicits health inferences without prompting, and the extent to which these inferences are made implicitly. Method: In 3 experiments, participants saw fictional product packages accompanied by written claims. Some packages contained an image that implied a health-related function (e.g., a brain), and some contained no image. Participants studied these packages and claims, and subsequently their memory for seen and unseen claims were tested. Results: When a health image was featured on a package, participants often subsequently recognized health claims that—despite being implied by the image—were not truly presented. In Experiment 2, these recognition errors persisted despite an explicit warning against treating the images as informative. In Experiment 3, these findings were replicated in a large consumer sample from 5 European countries, and with a cued-recall test. Conclusion: These findings confirm that images can act as health claims, by leading people to infer health benefits without prompting. These inferences appear often to be implicit, and could therefore be highly pervasive. The data underscore the importance of regulating imagery on product packaging; memory-based methods represent innovative ways to measure how leading (or misleading) specific images can be. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.
METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.
RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).
CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.
Resumo:
With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the author(s) of a biomedical publication, or implicit, such as the positive or negative sentiment that an author had when she wrote a product review; there may also be complex context such as the social network of the authors. Many applications require analysis of topic patterns over different contexts. For instance, analysis of search logs in the context of the user can reveal how we can improve the quality of a search engine by optimizing the search results according to particular users; analysis of customer reviews in the context of positive and negative sentiments can help the user summarize public opinions about a product; analysis of blogs or scientific publications in the context of a social network can facilitate discovery of more meaningful topical communities. Since context information significantly affects the choices of topics and language made by authors, in general, it is very important to incorporate it into analyzing and mining text data. In general, modeling the context in text, discovering contextual patterns of language units and topics from text, a general task which we refer to as Contextual Text Mining, has widespread applications in text mining. In this thesis, we provide a novel and systematic study of contextual text mining, which is a new paradigm of text mining treating context information as the ``first-class citizen.'' We formally define the problem of contextual text mining and its basic tasks, and propose a general framework for contextual text mining based on generative modeling of text. This conceptual framework provides general guidance on text mining problems with context information and can be instantiated into many real tasks, including the general problem of contextual topic analysis. We formally present a functional framework for contextual topic analysis, with a general contextual topic model and its various versions, which can effectively solve the text mining problems in a lot of real world applications. We further introduce general components of contextual topic analysis, by adding priors to contextual topic models to incorporate prior knowledge, regularizing contextual topic models with dependency structure of context, and postprocessing contextual patterns to extract refined patterns. The refinements on the general contextual topic model naturally lead to a variety of probabilistic models which incorporate different types of context and various assumptions and constraints. These special versions of the contextual topic model are proved effective in a variety of real applications involving topics and explicit contexts, implicit contexts, and complex contexts. We then introduce a postprocessing procedure for contextual patterns, by generating meaningful labels for multinomial context models. This method provides a general way to interpret text mining results for real users. By applying contextual text mining in the ``context'' of other text information management tasks, including ad hoc text retrieval and web search, we further prove the effectiveness of contextual text mining techniques in a quantitative way with large scale datasets. The framework of contextual text mining not only unifies many explorations of text analysis with context information, but also opens up many new possibilities for future research directions in text mining.
Resumo:
In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders.
Resumo:
By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.
Resumo:
Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. For this reason, several attempts have been made in order to develop methods that accurately quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be very accurate, showing very good sensibility and specificity. However, accurate quantification of this molecule, which is present at very low concentrations both at physiological and pathological states, is always a complex task and a target of intense research. Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification method for use in medical laboratories as an additional tool for diagnosis and/or treatment monitoring of a wide range of pathologies. We also aimed to evaluate the performance of the HPLC-based method developed here in a wide range of biological matrices. Material and methods: All experiments were performed on a Hitachi LaChrom Elite® HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 RP-18 (5μm) column. The method was further validated according to ICH guidelines. The biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions. Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). Additionally, the developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356 nm. Conclusion: The method described in this study, which was successfully developed and validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis in a wide range of biological matrices.
Resumo:
This thesis, titled Governance and Community Capitals, explores the kinds of practical processes that have made governance work in three faith-based schools in the Western Highlands of Papua New Guinea (PNG). To date, the nation of PNG has been unable to meet its stated educational goals; however, some faith-based primary schools have overcome educational challenges by changing their local governance systems. What constitutes good governance in developing countries and how it can be achieved in a PNG schooling context has received very little scholarly attention. In this study, the subject of governance is approached at the nexus between the administrative sciences and asset-based community development. In this space, the researcher provides an understanding of the contribution that community capitals have made to understandings of local forms of governance in the development context. However, by and large, conceptions of governance have a history of being positioned within a Euro-centric frame and very little, if anything is known about the naming of capitals by indigenous peoples. In this thesis, six indigenous community capitals are made visible, expanding the repertoire of extant capitals published to date. The capitals identified and named in this thesis are: Story, Wisdom, Action, Blessing, Name and Unity. In-depth insights into these capitals are provided and through the theoretical idea of performativity, the researcher advances an understanding of how the habitual enactment of the practical components of the capitals made governance work in this unique setting. The study draws from a grounded and appreciative methodology and is based on a case study design incorporating a three-stage cycle of investigation. The first stage tested the application of an assets-based method to documentary sources of data including most significant change stories, community mapping and visual diaries. In the second stage, a group process method relevant to a PNG context was developed and employed. The third stage involved building theory from case study evidence using content analysis, language and metaphorical speech acts as guides for complex analysis. The thesis demonstrates the contribution that indigenous community capitals can make to understanding local forms of governance and how PNG faith-based schools meet their local governance challenges.
Resumo:
The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.
Resumo:
The aims of this thesis were to determine the animal health status in organic dairy farms in Europe and to identify drivers for improving the current situation by means of a systemic approach. Prevalences of production diseases were determined in 192 herds in Germany, France, Spain, and Sweden (Paper I), and stakeholder consultations were performed to investigate potential drivers to improve animal health on the sector level (ibid.). Interactions between farm variables were assessed through impact analysis and evaluated to identify general system behaviour and classify components according to their outgoing and incoming impacts (Paper II-III). The mean values and variances of prevalences indicate that the common rules of organic dairy farming in Europe do not result in consistently low levels of production diseases. Stakeholders deemed it necessary to improve the current status and were generally in favour of establishing thresholds for the prevalence of production diseases in organic dairy herds as well as taking actions to improve farms below that threshold. In order to close the gap between the organic principle of health and the organic farming practice, there is the need to formulate a common objective of good animal health and to install instruments to ensure and prove that the aim is followed by all dairy farmers in Europe who sell their products under the organic label. Regular monitoring and evaluation of herd health performance based on reference values are considered preconditions for identifying farms not reaching the target and thus in need of improvement. Graph-based impact analysis was shown to be a suitable method for modeling and evaluating the manifold interactions between farm factors and for identifying the most influential components on the farm level taking into account direct and indirect impacts as well as impact strengths. Variables likely to affect the system as a whole, and the prevalence of production diseases in particular, varied largely between farms despite some general tendencies. This finding reflects the diversity of farm systems and underlines the importance of applying systemic approaches in health management. Reducing the complexity of farm systems and indicating farm-specific drivers, i.e. areas in a farm, where changes will have a large impact, the presented approach has the potential to complement and enrich current advisory practice and to support farmers’ decision-making in terms of animal health.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física