725 resultados para Graph-based Learning
Resumo:
Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.
Resumo:
The author carries out a pedagogical reflection on how the technology driven distance learning repeatedly neglects the scientific achievements of Second Language Acquisition and Language Pedagogy. Seeing communicative competence as a major goal of a language classroom, she presents the main challenges that the communicative approach poses to distance learning. To this end, a general distance learning theory by Moore is adapted to the needs of language education, through a distinction between three aspects of learner interaction – with the teacher, with other learners and with content. In this three-dimensional paradigm the learner is seen as the main actor of the process, the teacher as a facilitator, the text as a main source of communicative data and the learner autonomy as the fundament of the process.
Resumo:
The recent widespread use of social media platforms and web services has led to a vast amount of behavioral data that can be used to model socio-technical systems. A significant part of this data can be represented as graphs or networks, which have become the prevalent mathematical framework for studying the structure and the dynamics of complex interacting systems. However, analyzing and understanding these data presents new challenges due to their increasing complexity and diversity. For instance, the characterization of real-world networks includes the need of accounting for their temporal dimension, together with incorporating higher-order interactions beyond the traditional pairwise formalism. The ongoing growth of AI has led to the integration of traditional graph mining techniques with representation learning and low-dimensional embeddings of networks to address current challenges. These methods capture the underlying similarities and geometry of graph-shaped data, generating latent representations that enable the resolution of various tasks, such as link prediction, node classification, and graph clustering. As these techniques gain popularity, there is even a growing concern about their responsible use. In particular, there has been an increased emphasis on addressing the limitations of interpretability in graph representation learning. This thesis contributes to the advancement of knowledge in the field of graph representation learning and has potential applications in a wide range of complex systems domains. We initially focus on forecasting problems related to face-to-face contact networks with time-varying graph embeddings. Then, we study hyperedge prediction and reconstruction with simplicial complex embeddings. Finally, we analyze the problem of interpreting latent dimensions in node embeddings for graphs. The proposed models are extensively evaluated in multiple experimental settings and the results demonstrate their effectiveness and reliability, achieving state-of-the-art performances and providing valuable insights into the properties of the learned representations.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
Conferences that deliver interactive sessions designed to enhance physician participation, such as role play, small discussion groups, workshops, hands-on training, problem- or case-based learning and individualised training sessions, are effective for physician education.
Resumo:
Distance learners are self-directed learners traditionally taught via study books, collections of readings, and exercises to test understanding of learning packages. Despite advances in e-Learning environments and computer-based teaching interfaces, distance learners still lack opportunities to participate in exercises and debates available to classroom learners, particularly through non-text based learning techniques. Effective distance teaching requires flexible learning opportunities. Using arguments developed in interpretation literature, we argue that effective distance learning must also be Entertaining, Relevant, Organised, Thematic, Involving and Creative—E.R.O.T.I.C. (after Ham, 1992). We discuss an experiment undertaken with distance learners at The University of Queensland Gatton Campus, where we initiated an E.R.O.T.I.C. external teaching package aimed at engaging distance learners but using multimedia, including but not limited to text-based learning tools. Student responses to non-text media were positive.
Resumo:
Background Information:The incorporation of distance learning activities by institutions of higher education is considered an important contribution to create new opportunities for teaching at both, initial and continuing training. In Medicine and Nursing, several papers illustrate the adaptation of technological components and teaching methods are prolific, however, when we look at the Pharmaceutical Education area, the examples are scarce. In that sense this project demonstrates the implementation and assessment of a B-Learning Strategy for Therapeutics using a “case based learning” approach. Setting: Academic Pharmacy Methods:This is an exploratory study involving 2nd year students of the Pharmacy Degree at the School of Allied Health Sciences of Oporto. The study population consists of 61 students, divided in groups of 3-4 elements. The b-learning model was implemented during a time period of 8 weeks. Results:A B-learning environment and digital learning objects were successfully created and implemented. Collaboration and assessment techniques were carefully developed to ensure the active participation and fair assessment of all students. Moodle records show a consistent activity of students during the assignments. E-portfolios were also developed using Wikispaces, which promoted reflective writing and clinical reasoning. Conclusions:Our exploratory study suggests that the “case based learning” method can be successfully combined with the technological components to create and maintain a feasible online learning environment for the teaching of therapeutics.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, para a obtenção do grau de Mestre em Engenharia Informática
Resumo:
The European Project Semester at ISEP (EPS@ISEP) is a one semester project-based learning programme addressed to engineering students from diverse scientific backgrounds and nationalities. The students, organized in multicultural teams, are challenged to solve real world multidisciplinary problems, accounting for 30 ECTU. The EPS package, although focused on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). This paper presents the study plan, resources, operation and results of the EPS@ISEP that was created in 2011 to apply the best engineering education practices and promote the internationalization of ISEP. The results show that the EPS@ISEP students acquire during one semester the scientific, technical and soft competences necessary to propose, design and implement a solution for a multidisciplinary problem.
Resumo:
This working paper explores the use of interactive learning tools, such as business simulations, to facilitate the active learning process in accounting classes. Although business simulations were firstly introduced in the United States in the 1950s, the vast majority of accounting professors still use traditional teaching methods, based in end-of-chapter exercises and written cases. Moreover, the current students’ generation brings new challenges to the classroom related with their video, game, internet and mobile culture. Thus, a survey and an experimentation were conducted to understand, on one hand, if accounting professors are willing to adjust their teaching methods with the adoption of interactive learning tools and, on the other hand, if the adoption of interactive learning tools in accounting classes yield better academic results and levels of satisfaction among students. Students using more interactive learning approaches scored significantly higher means than others that did not. Accounting professors are clearly willing to try, at least once, the use of an accounting simulator in classes.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação