238 resultados para Gracilaria caudate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In personal and in society related context, people often evaluate the risk of environmental and technological hazards. Previous research addressing neuroscience of risk evaluation assessed particularly the direct personal risk of presented stimuli, which may have comprised for instance aspects of fear. Further, risk evaluation primarily was compared to tasks of other cognitive domains serving as control conditions, thus revealing general risk related brain activity, but not such specifically associated with estimating a higher level of risk. We here investigated the neural basis on which lay-persons individually evaluated the risk of different potential hazards for the society. Twenty healthy subjects underwent functional magnetic resonance imaging while evaluating the risk of fifty more or less risky conditions presented as written terms. Brain activations during the individual estimations of 'high' against 'low' risk, and of negative versus neutral and positive emotional valences were analyzed. Estimating hazards to be of high risk was associated with activation in medial thalamus, anterior insula, caudate nucleus, cingulate cortex and further prefrontal and temporo-occipital areas. These areas were not involved according to an analysis of the emotion ratings. In conclusion, we emphasize a contribution of the mentioned brain areas involved to signal high risk, here not primarily associated with the emotional valence of the risk items. These areas have earlier been reported to be associated with, beside emotional, viscerosensitive and implicit processing. This leads to assumptions of an intuitive contribution, or a "gut-feeling", not necessarily dependent of the subjective emotional valence, when estimating a high risk of environmental hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract PRINCIPLES: Computed tomography (CT) is inferior to the fibroscan and laboratory testing in the noninvasive diagnosis of liver fibrosis. On the other hand, CT is a frequently used diagnostic tool in modern medicine. The auxiliary finding of clinically occult liver fibrosis in CT scans could result in an earlier diagnosis. The aim of this study was to analyse quantifiable direct signs of liver remodelling in CT scans to depict liver fibrosis in a precirrhotic stage. METHODS: Retrospective review of 148 abdominal CT scans (80 liver cirrhosis, 35 precirrhotic fibrosis and 33 control patients). Fibrosis and cirrhosis were histologically proven. The diameters of the three main hepatic veins were measured 1-2 cm before their aperture into the inferior caval vein. The width of the caudate and the right hepatic lobe were divided, and measured horizontally at the level of the first bifurcation of the right portal vein in axial planes (caudate-right-lobe ratio). A combination of both (sum of liver vein diameters divided by the caudate-right lobe ratio) was defined as the ld/crl ratio. These metrics were analysed for the detection of liver fibrosis and cirrhosis. RESULTS: An ld/crl-r <24 showed a sensitivity of 83% and a specificity of 76% for precirrhotic liver fibrosis. Liver cirrhosis could be detected with a sensitivity of 88% and a specificity of 82% if ld/crl-r <20. CONCLUSION: An ld/crl-r <24 justifies laboratory testing and a fibroscan. This could bring forward the diagnosis and patients would profit from early treatment in a potentially reversible stage of disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dealing with one's emotions is a core skill in everyday life. Effective cognitive control strategies have been shown to be neurobiologically represented in prefrontal structures regulating limbic regions. In addition to cognitive strategies, mindfulness-associated methods are increasingly applied in psychotherapy. We compared the neurobiological mechanisms of these two strategies, i.e. cognitive reappraisal and mindfulness, during both the cued expectation and perception of negative and potentially negative emotional pictures. Fifty-three healthy participants were examined with functional magnetic resonance imaging (47 participants included in analysis). Twenty-four subjects applied mindfulness, 23 used cognitive reappraisal. On the neurofunctional level, both strategies were associated with comparable activity of the medial prefrontal cortex and the amygdala. When expecting negative versus neutral stimuli, the mindfulness group showed stronger activations in ventro- and dorsolateral prefrontal cortex, supramarginal gyrus as well as in the left insula. During the perception of negative versus neutral stimuli, the two groups only differed in an increased activity in the caudate in the cognitive group. Altogether, both strategies recruited overlapping brain regions known to be involved in emotion regulation. This result suggests that common neural circuits are involved in the emotion regulation by mindfulness-based and cognitive reappraisal strategies. Identifying differential activations being associated with the two strategies in this study might be one step towards a better understanding of differential mechanisms of change underlying frequently used psychotherapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frontal alpha band asymmetry (FAA) is a marker of altered reward processing in major depressive disorder (MDD), associated with reduced approach behavior and withdrawal. However, its association with brain metabolism remains unclear. The aim of this study is to investigate FAA and its correlation with resting – state cerebral blood flow (rCBF). We hypothesized an association of FAA with regional rCBF in brain regions relevant for reward processing and motivated behavior, such as the striatum. We enrolled 20 patients and 19 healthy subjects. FAA scores and rCBF were quantified with the use of EEG and arterial spin labeling. Correlations of the two were evaluated, as well as the association with FAA and psychometric assessments of motivated behavior and anhedonia. Patients showed a left – lateralized pattern of frontal alpha activity and a correlation of FAA lateralization with subscores of Hamilton Depression Rating Scale linked to motivated behavior. An association of rCBF and FAA scores was found in clusters in the dorsolateral prefrontal cortex bilaterally (patients) and in the left medial frontal gyrus, in the right caudate head and in the right inferior parietal lobule (whole group). No correlations were found in healthy controls. Higher inhibitory right – lateralized alpha power was associated with lower rCBF values in prefrontal and striatal regions, predominantly in the right hemisphere, which are involved in the processing of motivated behavior and reward. Inhibitory brain activity in the reward system may contribute to some of the motivational problems observed in MDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Catecholamine-O-methyl-tranferase (COMT) initiates dopamine degradation. Its activity is mainly determined by a single nucleotide polymorphism in the COMT gene (Val158Met, rs4680) separating high (Val/Val, COMT(HH)), intermediate (Val/Met, COMT(HL)) and low metabolizers (Met/Met, COMT(LL)). We investigated dopaminergic denervation in the striatum in PD patients according to COMT rs4680 genotype. METHODS Patients with idiopathic PD were assessed for motor severity (UPDRS-III rating scale in OFF-state), dopaminergic denervation using [123I]-FP-CIT SPECT imaging, and genotyped for the COMT rs4680 enzyme. [123I]-FP-CIT binding potential (BP) for each voxel was defined by the ratio of tracer-binding in the region of interest (striatum, caudate nucleus and putamen) to that in a region of non-specific activity. Genotyping was performed using TaqMan(®) SNP genotyping assay. We used a regression model to evaluate the effect of COMT genotype on the BP in the striatum and its sub-regions. RESULTS Genotype distribution was: 11 (27.5%) COMT(HH), 26 (65%) COMT(HL) and 3 (7.5%) COMT(LL). There were no significant differences in disease severity, treatments, or motor scores between genotypes. When adjusted to clinical severity, gender and age, low and intermediate metabolizers showed significantly higher rates of striatal denervation (COMT(HL+LL) BP = 1.32 ± 0.04) than high metabolizers (COMT(HH), BP = 1.6 ± 0.08; F(1.34) = 9.0, p = 0.005). Striatal sub-regions showed similar results. BP and UPDRS-III motor scores (r = 0.44, p = 0.04) (p < 0.001) were highly correlated. There was a gender effect, but no gender-genotype interaction. CONCLUSIONS Striatal denervation differs according to COMT-Val158Met polymorphism. COMT activity may play a role as a compensatory mechanism in PD motor symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After detachment from benthic habitats, the epibiont assemblages on floating seaweeds undergo substantial changes, but little is known regarding whether succession varies among different seaweed species. Given that floating algae may represent a limiting habitat in many regions, rafting organisms may be unselective and colonize any available seaweed patch at the sea surface. This process may homogenize rafting assemblages on different seaweed species, which our study examined by comparing the assemblages on benthic and floating individuals of the fucoid seaweeds Fucus vesiculosus and Sargassum muticum in the northern Wadden Sea (North Sea). Species richness was about twice as high on S. muticum as on F. vesiculosus, both on benthic and floating individuals. In both seaweed species benthic samples were more diverse than floating samples. However, the species composition differed significantly only between benthic thalli, but not between floating thalli of the two seaweed species. Separate analyses of sessile and mobile epibionts showed that the homogenization of rafting assemblages was mainly caused by mobile species. Among these, grazing isopods from the genus Idotea reached extraordinarily high densities on the floating samples from the northern Wadden Sea, suggesting that the availability of seaweed rafts was indeed limiting. Enhanced break-up of algal rafts associated with intense feeding by abundant herbivores might force rafters to recolonize benthic habitats. These colonization processes may enhance successful dispersal of rafting organisms and thereby contribute to population connectivity between sink populations in the Wadden Sea and source populations from up-current regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of the three-generation KE family, half of whose members are affected by a pronounced verbal dyspraxia, has led to identification of their core deficit as one involving sequential articulation and orofacial praxis. A positron emission tomography activation study revealed functional abnormalities in both cortical and subcortical motor-related areas of the frontal lobe, while quantitative analyses of magnetic resonance imaging scans revealed structural abnormalities in several of these same areas, particularly the caudate nucleus, which was found to be abnormally small bilaterally. A recent linkage study [Fisher, S., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P. & Pembry, M. E. (1998) Nat. Genet. 18, 168–170] localized the abnormal gene (SPCH1) to a 5.6-centiMorgan interval in the chromosomal band 7q31. The genetic mutation or deletion in this region has resulted in the abnormal development of several brain areas that appear to be critical for both orofacial movements and sequential articulation, leading to marked disruption of speech and expressive language.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3′-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.