962 resultados para Gomphrena elegans


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an approach to map large numbers of Tc1 transposon insertions in the genome of Caenorhabditis elegans. Strains have been described that contain up to 500 polymorphic Tc1 insertions. From these we have cloned and shotgun sequenced over 2000 Tc1 flanks, resulting in an estimated set of 400 or more distinct Tc1 insertion alleles. Alignment of these sequences revealed a weak Tc1 insertion site consensus sequence that was symmetric around the invariant TA target site and reads CAYATATRTG. The Tc1 flanking sequences were compared with 40 Mbp of a C. elegans genome sequence. We found 151 insertions within the sequenced area, a density of ≈1 Tc1 insertion in every 265 kb. As the rest of the C. elegans genome sequence is obtained, remaining Tc1 alleles will fall into place. These mapped Tc1 insertions can serve two functions: (i) insertions in or near genes can be used to isolate deletion derivatives that have that gene mutated; and (ii) they represent a dense collection of polymorphic sequence-tagged sites. We demonstrate a strategy to use these Tc1 sequence-tagged sites in fine-mapping mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide evidence that normal human presenilins can substitute for Caenorhabditis elegans SEL-12 protein in functional assays in vivo. In addition, six familial Alzheimer disease-linked mutant human presenilins were tested and found to have reduced ability to rescue the sel-12 mutant phenotype, suggesting that they have lower than normal presenilin activity. A human presenilin 1 deletion variant that fails to be proteolytically processed and a mutant SEL-12 protein that lacks the C terminus display considerable activity in this assay, suggesting that neither presenilin proteolysis nor the C terminus is absolutely required for normal presenilin function. We also show that sel-12 is expressed in most neural and nonneural cell types in all developmental stages. The reduced activity of mutant presenilins and as yet unknown gain-of-function properties may be a contributing factor in the development of Alzheimer disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The positions of ≈4,800 individual miniature inverted-repeat transposable element (MITE)-like repeats from four families were mapped on the Caenorhabditis elegans chromosomes. These families represent 1–2% of the total sequence of the organism. The four MITE families (Cele1, Cele2, Cele14, and Cele42) displayed distinct chromosomal distribution profiles. For example, the Cele14 MITEs were observed clustering near the ends of the autosomes. In contrast, the Cele2 MITEs displayed an even distribution through the central autosome domains, with no evidence for clustering at the ends. Both the number of elements and the distribution patterns of each family were conserved on all five C. elegans autosomes. The distribution profiles indicate chromosomal polarity and suggest that the current genetic and physical maps of chromosomes II, III, and X are inverted with respect to the other chromosomes. The degree of conservation of both the number and distribution of these elements on the five autosomes suggests a role in defining specific chromosomal domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converging TGF-β and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-β pathway. Dauer recovery in these animals is inhibited by the muscarinic antagonist atropine. Muscarinic agonists do not induce dauer recovery of either daf-2 or age-1 mutant animals, which have defects in the insulin-like signaling pathway. These data suggest that a metabotropic acetylcholine signaling pathway activates an insulin-like signal during C. elegans dauer recovery. Analogous and perhaps homologous cholinergic regulation of mammalian insulin release by the autonomic nervous system has been noted. In the parasitic nematode Ancylostoma caninum, the dauer larval stage is the infective stage, and recovery to the reproductive stage normally is induced by host factors. Muscarinic agonists also induce and atropine potently inhibits in vitro recovery of A. caninum dauer arrest. We suggest that host or parasite insulin-like signals may regulate recovery of A. caninum and could be potential targets for antihelminthic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. elegans, at least five also exhibited reduced virulence in mice. Three of the TnphoA mutants corresponded to the known virulence-related genes lasR, gacA, and lemA. Three of the mutants corresponded to known genes (aefA from Escherichia coli, pstP from Azotobacter vinelandii, and mtrR from Neisseria gonorrhoeae) that had not been shown previously to play a role in pathogenesis, and two of the mutants contained TnphoA inserted into novel sequences. These data indicate that the killing of C. elegans by P. aeruginosa can be exploited to identify novel P. aeruginosa virulence factors important for mammalian pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms underlying general anesthesia are unknown. For volatile general anesthetics (VAs), indirect evidence for both lipid and protein targets has been found. However, no in vivo data have implicated clearly any particular lipid or protein in the control of sensitivity to clinical concentrations of VAs. Genetics provides one approach toward identifying these mechanisms, but genes strongly regulating sensitivity to clinical concentrations of VAs have not been identified. By screening existing mutants of the nematode Caenorhabditis elegans, we found that a mutation in the neuronal syntaxin gene dominantly conferred resistance to the VAs isoflurane and halothane. By contrast, other mutations in syntaxin and in the syntaxin-binding proteins synaptobrevin and SNAP-25 produced VA hypersensitivity. The syntaxin allelic variation was striking, particularly for isoflurane, where a 33-fold range of sensitivities was seen. Both the resistant and hypersensitive mutations decrease synaptic transmission; thus, the indirect effect of reducing neurotransmission does not explain the VA resistance. As assessed by pharmacological criteria, halothane and isoflurane themselves reduced cholinergic transmission, and the presynaptic anesthetic effect was blocked by the resistant syntaxin mutation. A single gene mutation conferring high-level resistance to VAs is inconsistent with nonspecific membrane-perturbation theories of anesthesia. The genetic and pharmacological data suggest that the resistant syntaxin mutant directly blocks VA binding to or efficacy against presynaptic targets that mediate anesthetic behavioral effects. Syntaxin and syntaxin-binding proteins are candidate anesthetic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human presenilin genes PS1 and PS2 cause early-onset Alzheimer’s disease. Studies in Caenorhabditis elegans and in mice indicate that one function of presenilin genes is to facilitate Notch-pathway signaling. Notably, mutations in the C. elegans presenilin gene sel-12 reduce signaling through an activated version of the Notch receptor LIN-12. To investigate the function of a second C. elegans presenilin gene hop-1 and to examine possible genetic interactions between hop-1 and sel-12, we used a reverse genetic strategy to isolate deletion alleles of both loci. Animals bearing both hop-1 and sel-12 deletions displayed new phenotypes not observed in animals bearing either single deletion. These new phenotypes—germ-line proliferation defects, maternal-effect embryonic lethality, and somatic gonad defects—resemble those resulting from a reduction in signaling through the C. elegans Notch receptors GLP-1 and LIN-12. Thus SEL-12 and HOP-1 appear to function redundantly in promoting Notch-pathway signaling. Phenotypic analyses of hop-1 and sel-12 single and double mutant animals suggest that sel-12 provides more presenilin function than does hop-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that convert adenosine to inosine within double-stranded RNA. In the 12 years since the discovery of ADARs only a few natural substrates have been identified. These substrates were found by chance, when genomically encoded adenosines were identified as guanosines in cDNAs. To advance our understanding of the biological roles of ADARs, we developed a method for systematically identifying ADAR substrates. In our first application of the method, we identified five additional substrates in Caenorhabditis elegans. Four of those substrates are mRNAs edited in untranslated regions, and one is a noncoding RNA edited throughout its length. The edited regions are predicted to form long hairpin structures, and one of the RNAs encodes POP-1, a protein involved in cell fate decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

sqv (squashed vulva) genes comprise a set of eight independent loci in Caenorhabditis elegans required zygotically for the invagination of vulval epithelial cells and maternally for normal oocyte formation and embryogenesis. Sequencing of sqv-3, sqv-7, and sqv-8 suggested a role for the encoded proteins in glycolipid or glycoprotein biosynthesis. Using a combination of in vitro analysis of SQV enzymatic activities, sqv+-mediated rescue of vertebrate cell lines, and biochemical characterization of sqv mutants, we show that sqv-3, -7, and -8 all affect the biosynthesis of glycosaminoglycans and therefore compromise the function of one specific class of glycoconjugates, proteoglycans. These findings establish the importance of proteoglycans and their associated glycosaminoglycans in epithelial morphogenesis and patterning during C. elegans development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caenorhabditis elegans dauer formation is an alternative larval developmental pathway that the worm can take when environmental conditions become detrimental. Animals can survive several months in this stress-resistant stage and can resume normal development when growth conditions improve. Although the worms integrate a variety of sensory information to commit to dauer formation, it is currently unknown whether they also monitor internal cellular damage. The Ro ribonucleoprotein complex, which was initially described as a human autoantigen, is composed of one major 60-kDa protein, Ro60, that binds to one of four small RNA molecules, designated Y RNAs. Ro60 has been shown to bind mutant 5S rRNA molecules in Xenopus oocytes, suggesting a role for Ro60 in 5S rRNA biogenesis. Analysis of ribosomes from a C. elegans rop-1(−) strain, which is null for the expression of Ro60, demonstrated that they contain a high percentage of mutant 5S rRNA molecules, thereby strengthening the notion of a link between the rop-1 gene product and 5S rRNA quality control. The Ro particle was recently shown to be involved in the resistance of Deinococcus radiodurans to UV irradiation, suggesting a role for the Ro complex in stress resistance. We have studied the role of rop-1 in dauer formation. We present genetic and biochemical evidence that rop-1 interacts with dauer-formation genes and is involved in the regulation of the worms' entry into the dauer stage. Furthermore, we find that the rop-1 gene product undergoes a proteolytic processing step that is regulated by the dauer formation pathway via an aspartic proteinase. These results suggest that the Ro particle may function in an RNA quality-control checkpoint for dauer formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deg-3 gene from the nematode Caenorhabditis elegans encodes an α subunit of a nicotinic acetylcholine receptor that was first identified by a dominant allele, u662, which produced neuronal degeneration. Because deg-3 cDNAs contain the SL2 trans-spliced leader, we suggested that deg-3 was transcribed as part of a C. elegans operon. Here we show that des-2, a gene in which mutations suppress deg-3(u662), is the upstream gene in that operon. The des-2 gene also encodes an α subunit of a nicotinic acetylcholine receptor. As expected for genes whose mRNAs are formed from a single transcript, both genes have similar expression patterns. This coexpression is functionally important because (i) des-2 is needed for the deg-3(u662) degenerations in vivo; (ii) an acetylcholine-gated channel is formed in Xenopus oocytes when both subunits are expressed but not when either is expressed alone; and (iii) channel activity, albeit apparently altered from that of the wild-type channel, results from the expression of a u662-type mutant subunit but, again, only when the wild-type DES-2 subunit is present. Thus, the operon structure appears to regulate the coordinate expression of two channel subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of exogenous double-stranded RNA (dsRNA) into Caenorhabditis elegans has been shown to specifically and potently disrupt the activity of genes containing homologous sequences. In this study we present evidence that the primary interference effects of dsRNA are post-transcriptional. First, we examined the primary DNA sequence after dsRNA-mediated interference and found no evidence for alterations. Second, we found that dsRNA-mediated interference with the upstream gene in a polar operon had no effect on the activity of the downstream gene; this finding argues against an effect on initiation or elongation of transcription. Third, we observed by in situ hybridization that dsRNA-mediated interference produced a substantial, although not complete, reduction in accumulation of nascent transcripts in the nucleus, while cytoplasmic accumulation of transcripts was virtually eliminated. These results indicate that the endogenous mRNA is the target for interference and suggest a mechanism that degrades the targeted RNA before translation can occur. This mechanism is not dependent on the SMG system, an mRNA surveillance system in C. elegans responsible for targeting and destroying aberrant messages. We suggest a model of how dsRNA might function in a catalytic mechanism to target homologous mRNAs for degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in either of two human presenilin genes (PS1 and PS2) cause Alzheimer’s disease. Here we describe genetic and physical interactions between Caenorhabditis elegans SEL-10, a member of the Cdc4p family of proteins, and SEL-12, a C. elegans presenilin. We show that loss of sel-10 activity can suppress the egg-laying defective phenotype associated with reducing sel-12 activity, and that SEL-10 can physically complex with SEL-12. Proteins of the Cdc4p family have been shown to target proteins for ubiquitin-mediated turnover. The functional and physical interaction between sel-10 and sel-12 therefore offers an approach to understanding how presenilin levels are normally regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WormBase (http://www.wormbase.org) is a web-based resource for the Caenorhabditis elegans genome and its biology. It builds upon the existing ACeDB database of the C.elegans genome by providing data curation services, a significantly expanded range of subject areas and a user-friendly front end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (PCD) in mammals has been implicated in several disease states including cancer, autoimmune disease, and neurodegenerative disease. In Caenorhabditis elegans, PCD is a normal component of development. We find that Salmonella typhimurium colonization of the C. elegans intestine leads to an increased level of cell death in the worm gonad. S. typhimurium-mediated germ-line cell death is not observed in C. elegans ced-3 and ced-4 mutants in which developmentally regulated cell death is blocked, and ced-3 and ced-4 mutants are hypersensitive to S. typhimurium-mediated killing. These results suggest that PCD may be involved in the C. elegans defense response to pathogen attack.