980 resultados para Gold Coast Region
Resumo:
Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for nnitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the beta-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the beta-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.
Resumo:
Brazil is one of the world's largest countries with a rich diversity of wildlife, including resident and migratory wild birds, which may be natural reservoirs of the Newcastle disease virus (NDV). Because Brazil is a major global exporter of chicken meat, the emergence of such a disease may have a huge negative impact not only on the economy due to trade restrictions and embargoes, but also on the quality of life of the population. Samples were collected from 1,022 asymptomatic domestic and wild birds from the Brazilian coast and the Amazon region using tracheal/cloacal swabs and tested by RT-qPCR. The results showed 7 (0.7%) birds were positive for NDV. The positive samples were then isolated in embryonated chicken eggs and their matrix protein genes were partially sequenced, revealing a low-pathogenicity NDV. This study confirms the maintenance of the velogenic-NDV free status of Brazil.
Resumo:
The increased pollution in the aquatic ecosystem has led to the investigation of toxic elements in sea water by using marine organisms to assess marine pollution from human activities. Among these organisms, the mollusks bivalves have been used as biomonitors since they can accumulate trace elements and other substances, without the occurrence of their death. In this study, Perna perna mussels were transplanted from a mussel farm (reference region) to four sites located in coastal regions of So Paulo State, Brazil, close to anthropic discharge areas. Vanadium was determined in mussel tissues by instrumental neutron activation analysis (INAA). Quality control of V analysis was checked by analyzing biological reference materials and the results obtained were precise and in good agreement with the certified values. Comparisons between the V concentrations obtained in transplanted mussels indicated that those from So Sebastio region, close to an oil terminal presented the highest concentration of this element, during spring.
Resumo:
Brazil is one of the world's largest countries with a rich diversity of wildlife, including resident and migratory wild birds, which may be natural reservoirs of the Newcastle disease virus (NDV). Because Brazil is a major global exporter of chicken meat, the emergence of such a disease may have a huge negative impact not only on the economy due to trade restrictions and embargoes, but also on the quality of life of the population. Samples were collected from 1,022 asymptomatic domestic and wild birds from the Brazilian coast and the Amazon region using tracheal/cloacal swabs and tested by RT-qPCR. The results showed 7 (0.7%) birds were positive for NDV. The positive samples were then isolated in embryonated chicken eggs and their matrix protein genes were partially sequenced, revealing a low-pathogenicity NDV. This study confirms the maintenance of the velogenic-NDV free status of Brazil.
Resumo:
Nuclear abnormalities in erythrocytes (NAE) were taken as biomarkers in the catfish Cathorops spixii (Ariidae) sampled in an estuary little affected by human activity (Cananéia) and in three regions (Santos Channel: SC, Santos Bay: SB and São Vicente Channel: SVC) of the Santos-São Vicente estuary impacted by various anthropogenic activities. Increases in NAE were observed in fish from SC and SVC sampled in the summer period as compared with specimens from the Cananéia estuary. These results suggest the presence of genotoxic compounds in these regions. However, the absence of significant differences in micronuclei frequency reflects slight mutagenic effects in these individuals. It is possible that the lower NAE frequency in specimens from SB might be associated with the greater remobilization and dilution of chemicals in this region. The low frequency of NAE in C. spixii from the Cananéia estuary is in accordance with the slight anthropogenic influence in this system, and may be suggestive of the absence of genotoxic and mutagenic effects in these organisms.
Resumo:
Stone Age research on Northern Europe frequently makes gross generalizations about the Mesolithic and Neolithic, although we still lack much basic knowledge on how the people lived. The transition from the Mesolithic to the Neolithic in Europe has been described as a radical shift from an economy dominated by marine resources to one solely dependent on farming. Both the occurrence and the geographical extent of such a drastic shift can be questioned, however. It is therefore important to start out at a more detailed level of evidence in order to present the overall picture, and to account for the variability even in such regional or chronological overviews. Fifteen Stone Age sites were included in this study, ranging chronologically from the Early Mesolithic to the Middle or Late Neolithic, c. 8300–2500 BC, and stretching geographically from the westernmost coast of Sweden to the easternmost part of Latvia within the confines of latitudes 55–59° N. The most prominent sites in terms of the number of human and faunal samples analysed are Zvejnieki, Västerbjers and Skateholm I–II. Human and faunal skeletal remains were subjected to stable carbon and nitrogen isotope analysis to study diet and ecology at the sites. Stable isotope analyses of human remains provide quantitative information on the relative importance of various food sources, an important addition to the qualitative data supplied by certain artefacts and structures or by faunal or botanical remains. A vast number of new radiocarbon dates were also obtained. In conclusion, a rich diversity in Stone Age dietary practice in the Baltic Region was demonstrated. Evidence ranging from the Early Mesolithic to the Late Neolithic show that neither chronology nor location alone can account for this variety, but that there are inevitably cultural factors as well. Food habits are culturally governed, and therefore we cannot automatically assume that people at similar sites will have the same diet. Stable isotope studies are very important here, since they tell us what people actually consumed, not only what was available, or what one single meal contained. We should not be deceived in inferring diet from ritually deposited remains, since things that were mentally important were not always important in daily life. Thus, although a ritual and symbolic norm may emphasize certain food categories, these may in fact contribute very little to the diet. By the progress of analysis of intra-individual variation, new data on life history changes have been produced, revealing mobility patterns, breastfeeding behaviour and certain dietary transitions. The inclusion of faunal data has proved invaluable for understanding the stable isotope ecology of a site, and thereby improve the precision of the interpretations of human stable isotope data. The special case of dogs, though, demonstrates that these animals are not useful for inferring human diet, since, due to the number of roles they possess in human society, dogs could deviate significantly from humans in their diet, and in several cases have been proved to do so. When evaluating radiocarbon data derived from human and animal remains from the Pitted-Ware site of Västerbjers on Gotland, the importance of establishing the stable isotope ecology of the site before making deductions on reservoir effects was further demonstrated. The main aim of this thesis has been to demonstrate the variation and diversity in human practices, challenging the view of a “monolithic” Stone Age. By looking at individuals and not only at populations, the whole range of human behaviour has been accounted for, also revealing discrepancies between norm and practice, which are frequently visible both in the archaeological record and in present-day human behaviour.
Resumo:
Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.
Resumo:
Plasmonische Metallnanopartikel bündeln, verstärken und beeinflussen Licht auf nanoskopischer Ebene. Diese grundlegende Eigenschaft kommt von koheränten, kollektiven Schwingungen der Leitungsbandelektronen, die von einfallendem Licht resonant angeregt und lokalisierte Oberflächenplasmonenresonanz (LSPR) oder ‚Partikelplasmonen‘ genannt werden. Plasmonen in Metallnanopartikeln wurden bisher z.B. zur Erkennen von pathogenen Biomolekülen, bei der photothermischen Therapie und zur Verbesserung der Effizienz von Solarzellen verwendet. In dieser Arbeit werde ich meinen Fokus auf die Synthese und Funktionalisierung von Goldnanopartikeln zur Anwendung als Sensoren legen.rnrnKürzliche Verbesserungen in der nasschemischen Synthese haben zur Herstellung von Goldnanopartikel mit unterschiedlichen Formen und Größen geführt, die sich in ihren Sensoreigenschaften unterscheiden. Unter den unterschiedlichen Sensorgeometrien sind Goldnanostäbchen die bevorzugte Form zur Biomolekül-Sensorik durch LSPR. Nanostäbchen werden durch eine positiv geladene CTAB-Schicht stabilisiert, die Proteine bei neutralem pH-Wert anziehen kann. Die Adsorption und Desorption von Proteinen an der Nanopartikeloberfläche und damit die Bindungskinetiken von Proteinen kann auf Einzelmolekülebene erforscht werden. Ich zeige hier eine Studie mit hoher örtlicher und zeitlicher Auflösung um einzelne Bindungsereignisse von Fibronectin auf Goldnanostäbchen darzustellen.rnrnGoldnanostäbchen müssen mit spezifischen biologischen Erkennungselementen funktionalisiert werden um eine Analyterkennung oder Proteinwechselwirkung zu erreichen. Ich funktionalisiere Goldnanostäbchen mit kurzen DNA-Sequenzen (Aptamer-Sequenzen und NTA konjugierten Polihymidinen) und habe anhand diese unterschiedlich sensitiven Partikel eine Studie mit verschiedenen Analyten (oder Protein-Protein Wechselwirkungen) erfolgreich durchgeführt.rn rnPlasmonen von Nanopartikel-Clustern koppeln miteinander, was ihre Resonanzenergie ändert. Der kontrollierte Zusammenbau von Nanopartikeln zu Dimeren oder höher geordneten Strukturen wie ‚Core-Satellites‘ können dazu dienen ihre Sensitivität zu erhöhen. Diese Cluster bieten eine hohe Sensitivität auf Grund der Anwesenheit von plasmonischen Hotspots in der Lücke zwischen zwei Partikeln. Die Plasmonkopplung ist ein Phänomen, das abhängig vom Abstand zweier Partikel zueinander ist und bildet somit die Basis von sogenannten Plasmon-Linealen. Ich habe eine Strategie entwickelt um Dimere aus Hsp90 funktionalisierten Goldnanosphären zu bilden. Diese Technik wird nicht durch Ausbleichen oder das Blinken von Farbstoffen limitiert und ich zeige zum ersten Mal wie man dadurch dynamische Proteinkonformationen untersuchen kann.rn
Resumo:
I assessed the influence of the Keweenaw Current and spring thermal bar on the distribution of larval fishes and large zooplankton in Lake Superior. In 1998 and 1999, samples were collected from inshore (0.2 – 3.0 km from shore) and offshore (5.0 – 9.0 km from shore) locations on three transects off the western coast of the Keweenaw Peninsula, Michigan. For larval fishes, density and size distribution patterns of lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei) suggest a seasonal inshore to offshore movement. For zooplankton, seasonal warming appeared to be the major factor that limited planktonic catches of the primarily benthic Mysisrelicta and Diporeia spp., while simultaneously stimulated growth and reproduction of the cladocerans Daphnia spp., Holopedium gibberum, and Bythotrephes cederstroemi. In contrast, calanoid copepods as a group were abundant throughout the entire sampling season. The greatest abundances of zooplankton were generally encountered offshore, even for the cladocerans, which apparently expanded from inshore to offshore locations with seasonal warming. In 2000, sampling efforts focused on lake herring. Samples were collected from surface waters at 0.1 – 17.0 km from shore on two transects. Lake herring larvae were also reared in the laboratory from eggs in order to validate the use of otolith microstructure for aging. Increment deposition was not statistically different from a daily rate starting from 28 days after hatching, near the time of yolk-sac absorption, but larvae with lower growth rates could not be aged as accurately. In Lake Superior, lake herring tended to be slightly more abundant, larger, and older at inshore locations, but a dense patch of younger larvae was also encountered 7 – 13 km from shore. The distribution iiipatterns suggest that larvae were transported by prevailing currents into the study region, possibly from the more productive spawning regions in western Lake Superior. Growth rates were suppressed at offshore locations where temperatures were less than 8°C. These results indicate that lake herring larvae may be transported far distances from spawning concentrations by longshore currents, and water temperatures may largely control their growth.
Resumo:
Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring (210Pb, 210Po and 7Be) and man-made (137Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw Peninsula in Lake Superior has not yet been performed. In this dissertation research, field sampling, laboratory measurements and numerical modeling were conducted to understand the biogeochemistry of the radioisotope tracers and some particulate-related coastal processes. In the first part of the dissertation, radioisotope activities of 210Po and 210Pb in a variability of samples (dissolved, suspended particle, sediment trap materials, surficial sediment) were measured. A completed picture of the distribution and disequilibrium of this pair of isotopes was drawn. The application of a simple box model utilizing these field observations reveals short isotope residence times in the water column and a significant contribution of sediment resuspension (for both particles and isotopes). The results imply a highly dynamic coastal region. In the second part of this dissertation, this conclusion is examined further. Based on intensive sediment coring, the spatial distribution of isotope inventories (mainly 210Pb, 137Cs and 7Be) in the nearshore region was determined. Isotope-based focusing factors categorized most of the sampling sites as non- or temporary depositional zones. A twodimensional steady-state box-in-series model was developed and applied to individual transects with the 210Pb inventories as model input. The modeling framework included both water column and upper sediments down to the depth of unsupported 210Pb penetration. The model was used to predict isotope residence times and cross-margin fluxes of sediments and isotopes at different locations along each transect. The time scale for sediment focusing from the nearshore to offshore regions of the transect was on the order of 10 years. The possibility of sediment longshore movement was indicated by high inventory ratios of 137Cs: 210Pb. Local deposition of fine particles, including fresh organic carbon, may explain the observed distribution of benthic organisms such as Diporeia. In the last part of this dissertation, isotope tracers, 210Pb and 210Po, were coupled into a hydrodynamic model for Lake Superior. The model was modified from an existing 2-D finite difference physical-biological model which has previously been successfully applied on Lake Superior. Using the field results from part one of this dissertation as initial conditions, the model was used to predict the isotope distribution in the water column; reasonable results were achieved. The modeling experiments demonstrated the potential for using a hydrodynamic model to study radioisotope biogeochemistry in the lake, although further refinements are necessary.
Resumo:
We compare ICESat data (2003-2004) to airborne laser altimetry data (1997-98 and 1999-2000) to monitor surface changes over portions of Van der Veen (VdVIS), Whillans (WIS) and Kamb ice streams (KIS) in the Ross Embayment of the West Antarctic Ice Sheet. The spatial pattern of detected surface changes is generally consistent with earlier observations. However, important changes have occurred during the past decade. For example, areas on the VdVIS and WIS, where large thinning was detected by the airborne surveys, are now closer to being in balance. The upper trunk of KIS continues to build up with thickening rates reaching 0.4 m/year. Our results provide new evidence that the overall mass balance of the region is becoming more positive, but a significant spatial variability exists. They also demonstrate the potential of ICESat data for detecting spatial patterns of surface elevation change in Antarctica.
Resumo:
McMurdo Dry Valleys (MDV, Ross Sea region, Antarctica) precipitation exhibits extreme seasonality in ion concentration, 3-5 orders of magnitude between summer and winter precipitation. To identify aerosol sources and investigate causes for the observed amplitude in concentration variability, four snow pits were sampled along a coast-Polar Plateau transect across the MDV. The elevation of the sites ranges from 50 to 2400 m and the distance from the coast from 8 to 93 km. Average chemistry gradients along the transect indicate that most species have either a predominant marine or terrestrial source in the MDV. Empirical orthogonal function analysis on the snow-chemistry time series shows that at least 57% of aerosol deposition occurs concurrently. A conceptual climate model, based on meteorological observations, is used to explain the strong seasonality in the MDV. Our results suggest that radiative forcing of the ice-free valleys creates a surface low-pressure cell during summer which promotes air-mass flow from the Ross Sea. The associated precipitating air mass is relatively warm, humid and contains a high concentration of aerosols. During winter, the MDV are dominated by air masses draining off the East Antarctic ice sheet, that are characterized by cold, dry and low concentrations of aerosols. The strong differences between these two air-mass sources create in the MDV a polar version of the monsoonal flow, with humid, warm summers and dry, cold winters.
Resumo:
Over 30 years of hydrographic data from the northern Chile (18 degreesS-24 degreesS) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21 degreesS), A subsurface oxygen minimum, centered at similar to 250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile-Peru Current system.
Resumo:
We present the evolution of oceanographic conditions off the western coast of South America between 1996 and 1999, including the cold periods of 1996 and 1998-1999 and the 1997-1998 El Niño, using satellite observations of sea level, winds, sea surface temperature (SST), and chlorophyll concentration. Following a period of cold SST and low sea levels in 1996, both were anomalously high between March 1997 and May 1998. The anomalies were greatest between 5 degrees S and 15 degrees S, although they extended beyond 40 degrees S. Two distinct peaks in sea level and SST occurred in June-July 1997 and December 1997 to January 1998, separated by a relaxation period (August-November) of weaker anomalies. Satellite winds were upwelling favorable throughout the time period for most of the region and in fact increased between November 1997 and March 1998 between 5 degrees S and 25 degrees S. Satellite-derived chlorophyll concentrations are available for November 1996 to June 1997 (Ocean Color and Temperature Sensor (OCTS)) and then from October 1997 to present (Sea-viewing Wide Field-of-view Sensor (SeaWiFS)). Near-surface chlorophyll concentrations fell from May to June 1997 and from December 1997 to March 1998. The decrease was more pronounced in northern Chile than off the coast of Peru or central Chile and was stronger for larger cross-shelf averaging bins since nearshore concentrations remained relatively high.
Resumo:
The Black Sea is the unique ecosystem with lots of geological, ecological and biological features. For full understanding of these systems it is very important to investigate and indentify the microbial communities, including how the environment shapes its genome. Despite the data obtained by different investigations about the certain groups of microorganisms, isolated as pure cultures on nutritive mediums the total microbial metagenome hasn't been analysed. During July 2014 the 9 sites along the coast in Odessa region were selected for sampling of surface marine water, isolation of total DNA and further sequence 16S rRNA analysis. The water sampling and filtration were accompanied by measurement of metadata for evaluation of how the environment influences the present microbial biodiversity.