967 resultados para Glucocorticoid Receptor Polymorphisms
Resumo:
Background. Serum glucocorticoid regulated kinase (SGK-1) is induced in the kidney in diabetes mellitus. However, its role in the proximal tubule is unclear. This study determined the expression and functional role of SGK-1 in PTCs in high glucose conditions. As the epidermal growth factor (EGF) receptor is activated by both EGF and other factors implicated in diabetic nephropathy, the relationship of SGK-1 with EGFR activity was assessed. Methods. mRNA and protein expression of SGK-1 and mRNA expression of the sodium hydrogen exchanger NHE3 were measured in human PTCs exposed to 5 mmol/L (control) and 25 mmol/L (high) glucose. The effects of SGK-1 on cell growth, apoptosis, and progression through the cell cycle and NHE3 mRNA were examined following overexpression of SGK-1 in PTCs. The role of EGFR activation in observed changes was assessed by phospho-EGFR expression, and response to the EGFR blocker PKI166. SGK-1 expression was then assessed in vivo in a model of streptozotocin-induced diabetes mellitus type 2. Results. A total of 25 mmol/L glucose and EGF (10 ng/mL) increased SGK-1 mRNA (P < 0.005 and P < 0.002, respectively) and protein (both P < 0.02) expression. High glucose and overexpression of SGK-1 increased NHE3 mRNA (P < 0.05) and EGFR phosphorylation (P < 0.01), which were reversed by PKI166. SGK-1 overexpression increased PTC growth (P < 0.0001), progression through the cell cycle (P < 0.001), and increased NHE3 mRNA (P < 0.01), which were all reversed with PKI166. Overexpression of SGK-1 also protected against apoptosis induced in the PTCs (P < 0.0001). Up-regulation of tubular SGK-1 mRNA in diabetes mellitus was confirmed in vivo. Oral treatment with PKI166 attenuated this increase by 51%. No EGF protein was detectable in PTCs, suggestive of phosphorylation of the EGFR by high glucose and downstream induction of SGK-1. Conclusion. The effects of high glucose on PTC proliferation, reduced apoptosis and increased NHE3 mRNA levels are mediated by EGFR-dependent up-regulation of SGK-1.
Resumo:
The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 ({Delta}2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 ({Delta}2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.
Resumo:
The association between vitamin D levels and skeletal growth has long been recognized. However, exposure to low levels of vitamin D during early life is also known to alter brain development, and is a candidate risk factor for schizophrenia. This study examines the association between four polymorphisms in the vitamin D receptor (VDR) and 1) risk of schizophrenia, and 2) three anthropometric variables (height, head size, and head shape). Four single-nucleotide polymorphisms (SNPs; rs10735810/FokI, rsl544410/BsmI, rs7975232/ApaI, and rs731236/TaqI) in the VDR gene were genotyped in 179 individuals with schizophrenia and 189 healthy controls. No significant associations were detected between any of the four VDR SNPs and risk of schizophrenia. Patients were slightly but significantly shorter compared to controls. Of the four SNPs, only rs10735810/FokI was associated with any of the anthropometric measures: the M4 isoform of this SNP was significantly associated with larger head size (P = 0.002). In light of the evidence demonstrating a role for vitamin D during brain development, the association between polymorphisms in VDR and brain development warrants closer scrutiny.
Resumo:
RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory.
Resumo:
Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non- obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.
Resumo:
BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.
Resumo:
Kallikrein 14 (KLK14) has been proposed as a useful prognostic marker in prostate cancer, with expression reported to be associated with tumour characteristics such as higher stage and Gleason score. KLK14 tumour expression has also shown the potential to predict prostate cancer patients at risk of disease recurrence after radical prostatectomy. The KLKs are a remarkably hormone-responsive family of genes, although detailed studies of androgen regulation of KLK14 in prostate cancer have not been undertaken to date. Using in vitro studies, we have demonstrated that unlike many other prostatic KLK genes that are strictly androgen responsive, KLK14 is more broadly expressed and inversely androgen regulated in prostate cancer cells. Given these results and evidence that KLK14 may play a role in prostate cancer prognosis, we also investigated whether common genetic variants in the KLK14 locus are associated with risk and/or aggressiveness of prostate cancer in approximately 1200 prostate cancer cases and 1300 male controls. Of 41 single nucleotide polymorphisms assessed, three were associated with higher Gleason score (≥7): rs17728459 and rs4802765, both located upstream of KLK14, and rs35287116, which encodes a p.Gln33Arg substitution in the KLK14 signal peptide region. Our findings provide further support for KLK14 as a marker of prognosis in prostate cancer.
Resumo:
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.
Resumo:
Background The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia. Methods The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program. Results Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence. Conclusion This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.
Resumo:
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Resumo:
Breast cancer is the leading cause of cancer death among Australian women and its incidence is annually increasing. Genetic factors are involved in the complex etiology of breast cancer. The seco-steroid hormone, 1.25 dihydroxy vitamin D3 can influence breast cancer cell growth in vitro. A number of studies have reported correlations between vitamin D receptor (VDR) gene polymorphisms and several diseases including prostate cancer and osteoporosis. In breast cancer, low vitamin D levels in serum are correlated with disease progression and bone metastases, a situation also noted in prostate cancer and suggesting the involvement of the VDR. In our study, 2 restriction fragment length polymorphisms (RFLP) in the 3' region (detected by Apa1 and Taq1) and an initiation codon variant in the 5' end of the VDR gene (detected by Fok1) were tested for association with breast cancer risk in 135 females with sporadic breast cancer and 110 cancer-free female controls. Allele frequencies of the 3' Apa1 polymorphism showed a significant association (p = 0.016; OR = 1.56, 95% CI = 1.09-2.24) while the Taq1 RFLP showed a similar trend (p = 0.053; OR = 1.45, 95% CI = 1.00-2.00). Allele frequencies of the Fok1 polymorphism were not significantly different (p = 0.97; OR = 0.99, 95% CI = 0.69-1.43) in the study population. Our results suggest that specific alleles of the VDR gene located near the 3' region may identify an increased risk for breast cancer and justify further investigation of the role of VDR in breast cancer.