957 resultados para Geological Sequestration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Bronchopulmonary sequestration is a lung malformation characterized by nonfunctioning lung tissue without primary communication with the tracheobronchial tree. Intrauterine complications such as mediastinal shift, pleural effusion or fetal hydrothorax can be present. We present the case of a newborn with bilateral intralobar pulmonary sequestration. METHODS: Prenatal ultrasonography in a primigravida at 20 weeks of gestation revealed echogenic masses in the right fetal hemithorax with mediastinal shift towards the left side. Serial ultrasound confirmed persistence of the lesion with otherwise appropriate fetal development. Delivery was uneventful and physical examination revealed an isolated intermittent tachypnea. Chest CT scan and CT angiography showed a bilateral intrathoracic lesion with arterial supply from the aorta. Baby lung function testing suggested possible multiple functional compartments. RESULTS: Right and left thoracotomy was performed at the age of 7 months. A bilateral intralobar sequestration with vascularisation from the aorta was resected. Pathological and histological examination of the resected tissue confirmed the surgical diagnosis. At the age of 24 months, the child was doing well without pulmonary complications. CONCLUSIONS: Bilateral pulmonary sequestration requires intensive prenatal and postnatal surveillance. Though given the fact of a bilateral pulmonary sequestration, postnatal outcome showed similar favourable characteristics to an unilateral presentation. Baby lung function testing could provide additional information for optimal postnatal management and timing of surgical intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fieldwork is supportive of students’ natural inquiry abilities. Educational research findings suggest that instructors can foster the growth of thinking skills and promote science literacy by incorporating active learning strategies (McConnel et al, 2003). Huntoon (2001) states that there is a need to determine optimal learning strategies and to document the procedure of assessing those optimal geoscience curricula. This study seeks to determine if Earth Space II, a high school geological field course, can increase students’ knowledge of selected educational objectives. This research also seeks to measure any impact Earth Space II has on students’ attitude towards science. Assessment of the Earth Space II course objectives provided data on the impact of field courses on high school students’ scientific literacy, scientific inquiry skills, and understanding of selected course objectives. Knowledge assessment was done using a multiple choice format test, the Geoscience Concept Inventory, and an open-ended format essay test. Attitude assessment occurred by utilizing a preexisting science attitude survey. Both knowledge assessments items showed a positive effect size from the pretest to the posttest. The essay exam effect size was 17 and the Geoscience Concept Inventory effect size was 0.18. A positive impact on students’ attitude toward science was observed by an increase in the overall mean Likert value from the pre-survey to the post-survey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Collingwood Member is a mid to late Ordovician self-sourced reservoir deposited across the northern Michigan Basin and parts of Ontario, Canada. Although it had been previously studied in Canada, there has been relatively little data available from the Michigan subsurface. Recent commercial interest in the Collingwood has resulted in the drilling and production of several wells in the state of Michigan. An analysis of core samples, measured laboratory data, and petrophysical logs has yielded both a quantitative and qualitative understanding of the formation in the Michigan Basin. The Collingwood is a low permeability and low porosity carbonate package that is very high in organic content. It is composed primarily of a uniformly fine grained carbonate matrix with lesser amounts of kerogen, silica, and clays. The kerogen content of the Collingwood is finely dispersed in the clay and carbonate mineral phases. Geochemical and production data show that both oil and gas phases are present based on regional thermal maturity. The deposit is richest in the north-central part of the basin with thickest deposition and highest organic content. The Collingwood is a fairly thin deposit and vertical fractures may very easily extend into the surrounding formations. Completion and treatment techniques should be designed around these parameters to enhance production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of carbon sequestration in cement kiln dust (CKD) was investigated in a series of batch and column experiments conducted under ambient temperature and pressure conditions. The significance of this work is the demonstration that alkaline wastes, such as CKD, are highly reactive with carbon dioxide (CO2). In the presence of water, CKD can sequester greater than 80% of its theoretical capacity for carbon without any amendments or modifications to the waste. Other mineral carbonation technologies for carbon sequestration rely on the use of mined mineral feedstocks as the source of oxides. The mining, pre-processing and reaction conditions needed to create favorable carbonation kinetics all require significant additions of energy to the system. Therefore, their actual net reduction in CO2 is uncertain. Many suitable alkaline wastes are produced at sites that also generate significant quantities of CO2. While independently, the reduction in CO2 emissions from mineral carbonation in CKD is small (~13% of process related emissions), when this technology is applied to similar wastes of other industries, the collective net reduction in emissions may be significant. The technical investigations presented in this dissertation progress from proof of feasibility through examination of the extent of sequestration in core samples taken from an aged CKD waste pile, to more fundamental batch and microscopy studies which analyze the rates and mechanisms controlling mineral carbonation reactions in a variety of fresh CKD types. Finally, the scale of the system was increased to assess the sequestration efficiency under more pilot or field-scale conditions and to clarify the importance of particle-scale processes under more dynamic (flowing gas) conditions. A comprehensive set of material characterization methods, including thermal analysis, Xray diffraction, and X-ray fluorescence, were used to confirm extents of carbonation and to better elucidate those compositional factors controlling the reactions. The results of these studies show that the rate of carbonation in CKD is controlled by the extent of carbonation. With increased degrees of conversion, particle-scale processes such as intraparticle diffusion and CaCO3 micropore precipitation patterns begin to limit the rate and possibly the extent of the reactions. Rates may also be influenced by the nature of the oxides participating in the reaction, slowing when the free or unbound oxides are consumed and reaction conditions shift towards the consumption of less reactive Ca species. While microscale processes and composition affects appear to be important at later times, the overall degrees of carbonation observed in the wastes were significant (> 80%), a majority of which occurs within the first 2 days of reaction. Under the operational conditions applied in this study, the degree of carbonation in CKD achieved in column-scale systems was comparable to those observed under ideal batch conditions. In addition, the similarity in sequestration performance among several different CKD waste types indicates that, aside from available oxide content, no compositional factors significantly hinder the ability of the waste to sequester CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of atmospheric CO2 has been identified as the primary cause for the observed global warming over the past century. The geological and oceanic sequestration of CO2 has issues, such as cost and leakage as well as effects on sea biota. The ideal solution should be the conversion of CO2 into useful materials. However, most processes require high energy input. Therefore, it is necessary to explore novel processes with low energy demands to convert CO2 to useful solid materials. Amorphous carbon nitride and graphone received much attention due to their unusual structures and properties as well as their potential applications. However, to date there has been no attempt to synthesize those solid materials from CO2. Lithium nitride (Li3N) and lithium imide (Li2NH) are important hydrogen storage materials. However, their optical properties and reactivity has not yet studied. This dissertation research is aimed at the synthesis of carbon nitrides and graphone from CO2 and CO via their reaction with Li3N and Li2NH. The research was focused on (1) the evaluation of Li3N and Li2NH properties, (2) thermodynamic analysis of conversion of carbon dioxide and carbon monoxide into carbon nitride and other solid materials, (3) synthesis of carbon nitride from carbon dioxide, and (4) synthesis of graphone from carbon monoxide. First, the properties of Li3N, Li2NH, and LiNH2 were investigated. The X-ray diffraction measurements revealed that heat-treatment at 500°C introduce a phase transformation of β-Li3N to α-Li3N. Furthermore, the UV-visible absorption evaluation showed that the energy gaps of α-Li3N and β-Li3N are 1.81 and 2.14 eV, respectively. The UV-visible absorption measurements also revealed that energy gaps are 3.92 eV for Li2NH and 3.93 eV for LiNH2. This thermodynamic analysis was performed to predict the reactions. It was demonstrated that the reaction between carbon dioxide and lithium nitride is thermodynamically favorable and exothermic, which can generate carbon nitride and lithium cyanamide. Furthermore, the thermodynamic calculation indicated that the reaction between carbon monoxide and lithium imide can produce graphone and lithium cyanamide along with releasing heat. Based on the above thermodynamic analysis, the experiment of CO2 and Li3N reaction and CO and Li2NH were carried out. It was found that the reaction between CO2 and Li3N is very fast and exothermic. The XRD and element analysis revealed that the products are crystal lithium cyanamide and amorphous carbon nitrides with Li2O and Li2CO3. Furthermore, TEM images showed that carbon nitrides possess layer-structure, namely, it is graphene-structured carbon nitride. It was found that the reaction between Li2NH and CO was also exothermic, which produced graphone instead of carbon nitride. The composition and structures of graphone were evaluated by XRD, element analysis, TEM observation, and Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this trip and report was to familiarize the students of the Montana State School of Mines with methods of taking and mapping surface and undergound geology. All surface geology was mapped by means of plane table and alidade, and undergound work by means of Brunton compass and taps. The senior class of the Montana State School of MInes under the supervision of Dr. E.S. Perry performed the work, which covered an area in Madison County including South Boulder Creek, near Jefferson Island, the Silver Star Mining District, and the Alameda Mine, near Virginia City.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This trip was conducted to give those students working for their respective degrees an excellent opportunity to work under actual field conditions. A total of three weeks was taken to complete the required work. Two weeks were spent in the field gathering data, and making maps, and the last week was spent in the drawing room at the college preparing the final map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this report is to serve as a written explanation of the accompanying geologic maps and columnar sec­tion. Each year the senior students in mining and geological engineering at the Montana School of Mines spend two weeks in the field where they learn the fundamentals of geologic mapping and related field studies. An additional week is spent at the school where maps are assembled, prints made, end other work is done in preparation for the writing of the report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field work was conducted in areas adjacent to White­hall, Montana, as has been the custom for the past several years. Instruction in the proper use of the telescopic and open sight alidades, and the Brunton compass for surveying geologic features was given. Advantages of pacing and speed­ometer mapping were pointed out and used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alberta, responsible for ninety per cent of Canada's output, had, by 1947 entered into her fifth year of production decline. Only ten per cent of Canada's oil requirements were secured from home fields. Ninety per cent had to be imported, mainly from the United States. How long could imports be maintained on present levels? During the year, the United States had started rationing; in one sector of its domain. Would this become general? If so, what was the answer for Canada?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Big Sky Carbon Sequestration Partnership examines the ability of geologic systems to safely trap anthropogenic carbon dioxide to mitigate its impact on climate. One such system is the Duperow Formation within Kevin Dome, a large sedimentary trap and cap structure that has a long history of oil and gas production. To test storage potential of the dome, naturally trapped carbon dioxide is extracted, compressed, and reinjected. Geophysical methods and monitoring wells provide evidence of the fate and transport of the re-injected carbon dioxide. This study and others like it demonstrate the efficacy carbon sequestration at an industrial scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better acquaint seniors in Geology and mining with actual field practice, the Montana School of Mines offer a course in Geologic Field Mapping, during the three weeks preceding the opening of the fall semester. The first two weeks are spent in actual field mapping of the geologic formations near Whitehall, Montana, while the third week is spent back on the campus compiling data and finishing maps started in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plane table and pacing methods were used in the mapping of the individual areas, but an automobile traverse was used to tie the independent areas into a composite group that would be useful for the entire zone. All land marks, section corners, roads, fence lines, drainage, and geologic features were plotted in the field and later transferred to a master map.