909 resultados para Genetic-evidence
Resumo:
Simple phylogenetic tests were applied to a large data set of nucleotide sequences from two nuclear genes and a region of the mitochondrial genome of Trypanosoma cruzi, the agent of Chagas' disease. Incongruent gene genealogies manifest genetic exchange among distantly related lineages of T. cruzi. Two widely distributed isoenzyme types of T. cruzi are hybrids, their genetic composition being the likely result of genetic exchange between two distantly related lineages. The data show that the reference strain for the T. cruzi genome project (CL Brener) is a hybrid. Well-supported gene genealogies show that mitochondrial and nuclear gene sequences from T. cruzi cluster, respectively, in three or four distinct clades that do not fully correspond to the two previously defined major lineages of T. cruzi. There is clear genetic differentiation among the major groups of sequences, but genetic diversity within each major group is low. We estimate that the major extant lineages of T. cruzi have diverged during the Miocene or early Pliocene (3–16 million years ago).
Resumo:
It is reasonable to propose that gene expression profiles of purified stem cells could give clues for the molecular mechanisms of stem cell behavior. We took advantage of cDNA subtraction to identify a set of genes selectively expressed in mouse adult hematopoietic stem cells (HSC) as opposed to bone marrow (BM). Analysis of HSC-enriched genes revealed several key regulatory gene candidates, including two novel seven transmembrane (7TM) receptors. Furthermore, by using cDNA microarray techniques we found a large set of HSC-enriched genes that are expressed in mouse neurospheres (a population greatly enriched for neural progenitor cells), but not present in terminally differentiated neural cells. In situ hybridization demonstrated that many of them, including one HSC-enriched 7TM receptor, were selectively expressed in the germinal zones of fetal and adult brain, the regions harboring mouse neural stem cells. We propose that at least some of the transcripts that are selectively and commonly expressed in two or more types of stem cells define a functionally conserved group of genes evolved to participate in basic stem cell functions, including stem cell self-renewal.
Resumo:
The trinucleotide/amino acid relationships of the present-day genetic code are established by the amino-acylation reactions of tRNA synthetases, whereby each of 20 specific amino acids is attached to its cognate tRNAs, which bear anticodon trinucleotides. Because of its universality, the appearance of the modern genetic code is thought to predate the separation of prokaryotic and eukaryotic organisms in the universal phylogenetic tree. In the light of new sequence information, we present here a phylogenetic analysis that shows an unusual picture for tyrosyl- and tryptophanyl-tRNA synthetases. Ij particular, the eukaryotic tyrosyl- and tryptophanyl-tRNA synthetases are more related to each other than to their respective prokaryotic counterparts. In contrast, each of the other 18 eukaryotic synthetases is more related to its prokaryotic counterpart than to any eukaryotic synthetase specific for a different amino acid. Our results raise the possibility that present day tyrosyl- and tryptophanyl-tRNA synthetases appeared after the separation of nucleated cells from eubacteria. The results have implications for the development of the genetic code.
Resumo:
Background. Whether current criteria used to define nicotine dependence are informative for genetic research is an important empirical question. The authors used items of the DSM-IV and of the Heaviness of Smoking Index to characterize the nicotine dependence phenotype and to identify salient symptoms in a genetically informative community sample of Australian young adult female and mate twins. Method. Phenotypic and genetic factor analyses were performed on nine dependence symptoms (the seven DSM-IV substance dependence criteria and the two Heaviness of Smoking Index (HSI) items derived from the Fagerstrom Tolerance Questionnaire, time to first cigarette in the morning and number of cigarettes smoked per day). Phenotypic and genetic analyses were restricted to ever smokers. Results. Phenotypic nicotine dependence symptom covariation was best captured by two factors with a similar pattern of factor loadings for women and men. In genetic factor analysis item covariation was best captured by two genetic but one shared environmental factor for both women and men; however, item factor loadings differed by gender. All nicotine dependence symptoms were substantially heritable, except for the DSM-IV criterion of 'giving up or reducing important activities in order to smoke', which was weakly familial. Conclusions. The salient behavioral indices of nicotine dependence are similar for women and men. DSM-IV criteria of tolerance, withdrawal, and experiencing difficulty quitting and HSI items time to first cigarette in the morning and number of cigarettes smoked per day may represent the most highly heritable symptoms of nicotine dependence for both women and men.
Resumo:
Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.
Resumo:
The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.
Resumo:
Once thought rare, primary aldosteronism (PAL) is now reported to be responsible for 5–10% of hypertension. Unlike familial hyperaldosteronism type I (FH-I), FH-II is not glucocorticoidremediable and not associated with the hybrid CYP11B1/CYP11B2 gene mutation. At least five times more common than FH-I, FH-II is clinically indistinguishable from apparently sporadic PAL, suggesting an even higher incidence. Studies performed in collaboration with C Stratakis (NIH, Bethesda) on our largest Australian family (eight affected members) demonstrated linkage at chromosome 7p22. Linkage at this region was also found in a South American family (DNA provided by MI New, Mount Sinai School of Medicine, New York) and in a second Australian family. The combined multipoint LOD score for these 3 families is 4.61 (q = 0) with markers D7S462 and D7S517, providing strong support for this locus harbouring mutations responsible for FH-II. A newly identified recombination event in our largest Australian family has narrowed the region of linkage by 1.8 Mb, permitting exclusion of approximately half the genes residing in the originally reported 5 Mb linked locus. Candidate genes that are involved in cell cycle control are of interest as adrenal hyperplasia and adrenal adenomas are common in FH-II patients. A novel candidate gene in this linked region produces the retinoblastoma-associated Kruppel-associated box protein (RBaK) which interacts with the retinoblastoma gene product to repress the expression of genes activated by members of the E2F family of transcription factors.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10(-5), Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10(-06)/Pfemales: 3.45 × 10(-07)/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
[EN] Aim: A key life-history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular, we focus on the evidence for transatlantic transport.