873 resultados para Genetic Programming, NPR, Evolutionary Art


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software as a Service (SaaS) in Cloud is getting more and more significant among software users and providers recently. A SaaS that is delivered as composite application has many benefits including reduced delivery costs, flexible offers of the SaaS functions and decreased subscription cost for users. However, this approach has introduced a new problem in managing the resources allocated to the composite SaaS. The resource allocation that has been done at the initial stage may be overloaded or wasted due to the dynamic environment of a Cloud. A typical data center resource management usually triggers a placement reconfiguration for the SaaS in order to maintain its performance as well as to minimize the resource used. Existing approaches for this problem often ignore the underlying dependencies between SaaS components. In addition, the reconfiguration also has to comply with SaaS constraints in terms of its resource requirements, placement requirement as well as its SLA. To tackle the problem, this paper proposes a penalty-based Grouping Genetic Algorithm for multiple composite SaaS components clustering in Cloud. The main objective is to minimize the resource used by the SaaS by clustering its component without violating any constraint. Experimental results demonstrate the feasibility and the scalability of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV), we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the real world there are many problems in network of networks (NoNs) that can be abstracted to a so-called minimum interconnection cut problem, which is fundamentally different from those classical minimum cut problems in graph theory. Thus, it is desirable to propose an efficient and effective algorithm for the minimum interconnection cut problem. In this paper we formulate the problem in graph theory, transform it into a multi-objective and multi-constraint combinatorial optimization problem, and propose a hybrid genetic algorithm (HGA) for the problem. The HGA is a penalty-based genetic algorithm (GA) that incorporates an effective heuristic procedure to locally optimize the individuals in the population of the GA. The HGA has been implemented and evaluated by experiments. Experimental results have shown that the HGA is effective and efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is exciting to be living at a time when the big questions in biology can be investigated using modern genetics and computing [1]. Bauzà-Ribot et al.[2] take on one of the fundamental drivers of biodiversity, the effect of continental drift in the formation of the world’s biota 3 and 4, employing next-generation sequencing of whole mitochondrial genomes and modern Bayesian relaxed molecular clock analysis. Bauzà-Ribot et al.[2] conclude that vicariance via plate tectonics best explains the genetic divergence between subterranean metacrangonyctid amphipods currently found on islands separated by the Atlantic Ocean. This finding is a big deal in biogeography, and science generally [3], as many other presumed biotic tectonic divergences have been explained as probably due to more recent transoceanic dispersal events [4]. However, molecular clocks can be problematic 5 and 6 and we have identified three issues with the analyses of Bauzà-Ribot et al.[2] that cast serious doubt on their results and conclusions. When we reanalyzed their mitochondrial data and attempted to account for problems with calibration 5 and 6, modeling rates across branches 5 and 7 and substitution saturation [5], we inferred a much younger date for their key node. This implies either a later trans-Atlantic dispersal of these crustaceans, or more likely a series of later invasions of freshwaters from a common marine ancestor, but either way probably not ancient tectonic plate movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. () tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over-represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.