884 resultados para Generalized linear mixed model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper deals with estimation of variance components, prediction of breeding values and selection in a population of rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell.-Arg.] from Rio Branco, State of Acre, Brazil. The REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure was applied. For this purpose, 37 rubber tree families were obtained and assessed in a randomized complete block design, with three unbalanced replications. The field trial was carried out at the Experimental Station of UNESP, located in Selvíria, State of Mato Grosso do Sul, Brazil. The quantitative traits evaluated were: girth (G), bark thickness (BT), number of latex vessel rings (NR), and plant height (PH). Given the unbalanced condition of the progeny test, the REML/BLUP procedure was used for estimation. The narrow-sense individual heritability estimates were 0.43 for G, 0.18 for BT, 0.01 for NR, and 0.51 for PH. Two selection strategies were adopted: one short-term (ST - selection intensity of 8.85%) and the other long-term (LT - selection intensity of 26.56%). For G, the estimated genetic gains in relation to the population average were 26.80% and 17.94%, respectively, according to the ST and LT strategies. The effective population sizes were 22.35 and 46.03, respectively. The LT and ST strategies maintained 45.80% and 28.24%, respectively, of the original genetic diversity represented in the progeny test. So, it can be inferred that this population has potential for both breeding and ex situ genetic conservation as a supplier of genetic material for advanced rubber tree breeding programs. Copyright by the Brazilian Society of Genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the genetic and non-genetic effects that influencevigor at birth and preweaning mortality in Nellore calves. A total of 11,727 records of births that occurred between 1978 and 2006, offspring of 363 sires, were analyzed. Poor calf vigor at birth (VB) and preweaning mortality divided into stillbirth (SB), early mortality (EM) and total mortality (TM) were analyzed as binary variables. Generalized linear models were used for the evaluation of non-genetic effects and generalized linear mixed models for genetic effects (sire and animal models). The incidences were 4.75% for VB, 2.66% for SB, 5.28% for EM, and 7.99% for TM. Birth weight was the effect that most influenced the traits studied. Calves weighing less than 22kg(females) and less than 24kg (males) were at a higher risk of low vigor and preweaning mortality. Preweaning mortality was higher among calves born from cows aged .3 and .11 years at calving compared with cows aged 7 to 10 years. Male calves presented less vigor and higher preweaning mortality than female calves. Selection for postweaning weight did not influence preweaning mortality. The heritability estimates ranged between 0.01 and 0.09 for VB, 0.00 and 0.27 for SB, 0.03 and 0.17 for EM and 0.02 and 0.10 for TM. Stillbirth should be included as a selection criterion in breeding programs of Nellore cattle, alone or as part of a selection index, aiming to reduce preweaning mortality. © 2013 Sociedade Brasileira de Zootecnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of spatio-temporal distribution of Brachyura are determined by the interaction among life history traits, inter and intraspecific relationships, as well as by the variation of abiotic factors. This study aimed to characterize patterns of spatio-temporal distribution of Persephona lichtensteinii, Persephona mediterranea and Persephona punctata in two regions of the northern coast of Sao Paulo State, southeastern region of Brazil. Collections were done monthly from July 2001 to June 2003 in Caraguatatuba and Ubatuba, using a shrimp fishery boat equipped with double-rig nets. The patterns of species distribution were tested by means of redundancy analysis (RDA) and generalized linear mixed models (GLMM) in relation to the recorded environmental factors (BT: bottom temperature, BS: bottom salinity, OM: organic matter and granulometry (Phi)). The most influent environmental factor over the species distribution was the Phi, and the ascendant order of influence was P. lichtensteinii, P. punctata and P. mediterranea. The greater abundance of P. mediterranea showed a conservative pattern of distribution for the genus in the sampled region. The greater occurrence of P. punctata and P. lichtensteinii, in distinct transects than those occupied by P. mediterranea, seems to be a strategy to avoid competition among congeneric species, which is related to the substratum specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR). Disease severity in CF varies greatly, and sibling studies strongly indicate that genes other than CFTR modify disease outcome. Syntaxin 1A (STX1A) has been reported as a negative regulator of CFTR and other ion channels. We hypothesized that STX1A variants act as a CF modifier by influencing the remaining function of mutated CFTR. We identified STX1A variants by genomic resequencing patients from the Bernese CF Patient Data Registry and applied linear mixed model analysis to establish genotype-phenotype correlations, revealing STX1A rs4363087 (c.467-38A>G) to significantly influence lung function. The same STX1A risk allele was recognized in the European CF Twin and Sibling Study (P=0.0027), demonstrating that the genotype-phenotype association of STX1A to CF disease severity is robust enough to allow replication in two independent CF populations. rs4363087 is in linkage disequilibrium to the exonic variant rs2228607 (c.204C>T). Considering that neither rs4363087 nor rs2228607 changes the amino-acid sequence of STX1A, we investigated their effects on mRNA level. We show that rs2228607 reinforces aberrant splicing of STX1A mRNA, leading to nonsense-mediated mRNA decay. In conclusion, we demonstrate the clinical relevance of STX1A variants in CF, and evidence the functional relevance of STX1A variant rs2228607 at molecular level. Our findings show that genes interacting with CFTR can modify CF disease progression.European Journal of Human Genetics advance online publication, 10 April 2013; doi:10.1038/ejhg.2013.57.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal/clustered data, conditional logistic regression for matched case-control studies, multivariate measurement error models, generalized linear mixed models with a semiparametric component, and many others. We propose profile-kernel and backfitting estimation methods for these problems, derive their asymptotic distributions, and show that in likelihood problems the methods are semiparametric efficient. While generally not true, with our methods profiling and backfitting are asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance parameters are estimated from a different algorithm. The proposed methods are evaluated using simulation studies and applied to the Kenya hemoglobin data.