922 resultados para Generalized Linear Model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Even though antenatal care is universally regarded as important, determinants of demand for antenatal care have not been widely studied. Evidence concerning which and how socioeconomic conditions influence whether a pregnant woman attends or not at least one antenatal consultation or how these factors affect the absences to antenatal consultations is very limited. In order to generate this evidence, a two-stage analysis was performed with data from the Demographic and Health Survey carried out by Profamilia in Colombia during 2005. The first stage was run as a logit model showing the marginal effects on the probability of attending the first visit and an ordinary least squares model was performed for the second stage. It was found that mothers living in the pacific region as well as young mothers seem to have a lower probability of attending the first visit but these factors are not related to the number of absences to antenatal consultation once the first visit has been achieved. The effect of health insurance was surprising because of the differing effects that the health insurers showed. Some familiar and personal conditions such as willingness to have the last children and number of previous children, demonstrated to be important in the determination of demand. The effect of mother’s educational attainment was proved as important whereas the father’s educational achievement was not. This paper provides some elements for policy making in order to increase the demand inducement of antenatal care, as well as stimulating research on demand for specific issues on health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wilson’s Warbler (Cardellina pusilla; WIWA) has been declining for several decades, possibly because of habitat loss. We compared occupancy of territorial males in two habitat types of Québec’s boreal forest, alder (Alnus spp.) scrubland and recent clear-cuts. Singing males occurred in clusters, their occupancy was similar in both habitats, but increased with the amount of alder or clear-cut within 400 m of point-count stations. A despotic distribution of males between habitats appeared unlikely, because there were no differences in morphology between males captured in clear-cuts vs. alder. Those results contrast with the prevailing view, mostly based on western populations, that WIWA are wetland or riparian specialists, and provide the first evidence for a preference for large tracts of habitat in this species. Clear-cuts in the boreal forest may benefit WIWA by supplying alternative nesting habitat. However, the role of clear-cuts as source or sink habitats needs to be addressed with data on reproduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study to monitor boreal songbird trends was initiated in 1998 in a relatively undisturbed and remote part of the boreal forest in the Northwest Territories, Canada. Eight years of point count data were collected over the 14 years of the study, 1998-2011. Trends were estimated for 50 bird species using generalized linear mixed-effects models, with random effects to account for temporal (repeat sampling within years) and spatial (stations within stands) autocorrelation and variability associated with multiple observers. We tested whether regional and national Breeding Bird Survey (BBS) trends could, on average, predict trends in our study area. Significant increases in our study area outnumbered decreases by 12 species to 6, an opposite pattern compared to Alberta (6 versus 15, respectively) and Canada (9 versus 20). Twenty-two species with relatively precise trend estimates (precision to detect > 30% decline in 10 years; observed SE ≤ 3.7%/year) showed nonsignificant trends, similar to Alberta (24) and Canada (20). Precision-weighted trends for a sample of 19 species with both reliable trends at our site and small portions of their range covered by BBS in Canada were, on average, more negative for Alberta (1.34% per year lower) and for Canada (1.15% per year lower) relative to Fort Liard, though 95% credible intervals still contained zero. We suggest that part of the differences could be attributable to local resource pulses (insect outbreak). However, we also suggest that the tendency for BBS route coverage to disproportionately sample more southerly, developed areas in the boreal forest could result in BBS trends that are not representative of range-wide trends for species whose range is centred farther north.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model (HadCM3) using a Linear Inverse Modelling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant non-normal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic Seas impact the MOC, and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop the linearization of a semi-implicit semi-Lagrangian model of the one-dimensional shallow-water equations using two different methods. The usual tangent linear model, formed by linearizing the discrete nonlinear model, is compared with a model formed by first linearizing the continuous nonlinear equations and then discretizing. Both models are shown to perform equally well for finite perturbations. However, the asymptotic behaviour of the two models differs as the perturbation size is reduced. This leads to difficulties in showing that the models are correctly coded using the standard tests. To overcome this difficulty we propose a new method for testing linear models, which we demonstrate both theoretically and numerically. © Crown copyright, 2003. Royal Meteorological Society

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future climate change impact assessment of hydrological resources. The four proposed statistical downscaling models use large-scale predictors (derived from climate model outputs or reanalysis data) that characterize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics. The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling) and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscaling). For each statistical model and each spatial resolution, three temporal resolutions were considered, namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated approach’. The results show that flow sensitivity to atmospheric factors is significantly different between nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed better than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees method showed higher and less variable R2 values to downscale the hydrological variability in both nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fortnightly median flows were projected based on the regional downscaling approach. The results suggest a global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, whatever the considered scenario. The discussion considers the performance of each statistical method for downscaling flow at different spatial and temporal scales as well as the relationship between atmospheric processes and flow variability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also calculated to assess the numerical conditioning of the identification process.