618 resultados para Gates.
Resumo:
Surface-potential-based compact charge models for symmetric double-gate metal-oxide-semiconductor field-effect transistors (SDG-MOSFETs) are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. In this paper, we propose a simple surface-potential-based charge model, which is applicable for tied double-gate MOSFETs having same gate work function but could have any difference in gate oxide thickness. The proposed model utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and thus, it could be implemented in any circuit simulator very easily and extendable to short-channel devices. We also propose a simple physics-based perturbation technique by which the surface potentials of an asymmetric device could be obtained just by solving the input voltage equation of SDG devices for small asymmetry cases. The proposed model, which shows excellent agreement with numerical and TCAD simulations, is implemented in a professional circuit simulator through the Verilog-A interface and demonstrated for a 101-stage ring oscillator simulation. It is also shown that the proposed model preserves the source/drain symmetry, which is essential for RF circuit design.
Resumo:
Decoherence as an obstacle in quantum computation is viewed as a struggle between two forces [1]: the computation which uses the exponential dimension of Hilbert space, and decoherence which destroys this entanglement by collapse. In this model of decohered quantum computation, a sequential quantum computer loses the battle, because at each time step, only a local operation is carried out but g*(t) number of gates collapse. With quantum circuits computing in parallel way the situation is different- g(t) number of gates can be applied at each time step and number gates collapse because of decoherence. As g(t) ≈ g*(t) competition here is even [1]. Our paper improves on this model by slowing down g*(t) by encoding the circuit in parallel computing architectures and running it in Single Instruction Multiple Data (SIMD) paradigm. We have proposed a parallel ion trap architecture for single-bit rotation of a qubit.
Resumo:
The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.
Resumo:
A novel slope delay model for CMOS switch-level timing verification is presented. It differs from conventional methods in being semianalytic in character. The model assumes that all input waveforms are trapezoidal in overall shape, but that they vary in their slope. This simplification is quite reasonable and does not seriously affect precision, but it facilitates rapid solution. The model divides the stages in a switch-level circuit into two types. One corresponds to the logic gates, and the other corresponds to logic gates with pass transistors connected to their outputs. Semianalytic modeling for both cases is discussed.
Resumo:
We report on a study into electrode fabrication for the gate control of carbon nanotubes partially suspended above an oxidised silicon substrate. A fabrication technique has been developed that allows self-aligned side-gate electrodes to be placed with respect to an individual nanotube with a spacing of less than 10 nm. The suspended multi-walled carbon nanotube (MWCNT) is used as an evaporation mask during metal deposition. The metal forms an island on the nanotube, with increasing width as the metal is deposited, forming a wedge shape, so that even thick deposited layers yield islands that remain separated from the metal deposited on the substrate due to shadowing of the evaporation. The island can be removed during lift-off to leave a set of self-aligned electrodes on the substrate. Results show that Cr yields self-aligned side gates with around 90% effectiveness. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
[ES] Al respecto del modelo virtual con texturas fotográficas generado en este proyecto, se puede consultar también el siguiente artículo:
Resumo:
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security.
At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level.
In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations.
In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction.
In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
Resumo:
A feasible scheme for constructing quantum logic gates is proposed on the basis of quantum switches in cavity QED. It is shown that the light field which is fed into the cavity due to the passage of an atom in a certain state can be used to manipulate the conditioned quantum logical gate. In our scheme, the quantum information is encoded in the states of Rydberg atoms and the cavity mode is not used as logical qubits or as a communicating "bus"; thus, the effect of atomic spontaneous emission can be neglected and the strict requirements for the cavity can be relaxed.
Resumo:
A recirculating charge-coupled device structure has been devised. Entrance and exit gates allow a signal to be admitted, recirculated a given number of times, and then examined. In this way a small device permits simulation of a very long shift register without passing the signal through input and output diffusions. An oscilloscope motion picture demonstrating degradation of an actual circulating signal has been made. The performance of the device in simulating degradation of a signal by a very long shift register is well fit by a simple model based on transfer inefficiency.
Electrical properties of the mercury selenide on n-type chemically-cleaned silicon Schottky barrier have been studied. Barrier heights measured were 0.96 volts for the photoresponse technique and 0.90 volts for the current-voltage technique. These are the highest barriers yet reported on n-type silicon.
Resumo:
The influence upon the basic viscous flow about two axisymmetric bodies of (i) freestream turbulence level and (ii) the injection of small amounts of a drag-reducing polymer (Polyox WSR 301) into the test model boundary layer was investigated by the schlieren flow visualization technique. The changes in the type and occurrence of cavitation inception caused by the subsequent modifications in the viscous flow were studied. A nuclei counter using the holographic technique was built to monitor freestream nuclei populations and a few preliminary tests investigating the consequences of different populations on cavitation inception were carried out.
Both test models were observed to have a laminar separation over their respective test Reynolds number ranges. The separation on one test model was found to be insensitive to freestream turbulence levels of up to 3.75 percent. The second model was found to be very susceptible having its critical velocity reduced from 30 feet per second at a 0.04 percent turbulence level to 10 feet per second at a 3.75 percent turbulence level. Cavitation tests on both models at the lowest turbulence level showed the value of the incipient cavitation number and the type of cavitation were controlled by the presence of the laminar separation. Cavitation tests on the second model at 0.65 percent turbulence level showed no change in the inception index, but the appearance of the developed cavitation was altered.
The presence of Polyox in the boundary layer resulted in a cavitation suppression comparable to that found by other investigators. The elimination of the normally occurring laminar separation on these bodies by a polymer-induced instability in the laminar boundary layer was found to be responsible for the suppression of inception.
Freestream nuclei populations at test conditions were measured and it was found that if there were many freestream gas bubbles the normally present laminar separation was elminated and travelling bubble type cavitation occurred - the value of the inception index then depended upon the nuclei population. In cases where the laminar separation was present it was found that the value of the inception index was insensitive to the free stream nuclei populations.
Resumo:
The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.
It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 °C – 60 °C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.
Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.
MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.
Resumo:
O presente estudo teve como objetivo comparar a qualidade do selamento promovido por 3 cimentos reparadores endodônticos: Ceramicrete, iRoot-BP Plus e BioAggregate, com o ProRoot MTA branco, utilizando o modelo de infiltração de glicose sob pressão. 64 incisivos centrais superiores, recém-extraídos e sem tratamento endodôntico foram selecionados. A instrumentação do canal radicular foi realizada em todos os dentes com brocas Gates-Glidden e limas K-Flexofile (Dentsply Maillefer, Ballaigues Suíça), 1mm aquém do ápice. A patência foraminal foi confirmada a cada instrumento usado. Os dentes tiveram suas coroas removidas padronizando-os em 15mm de comprimento. Foi realizada apicetomia a 3mm do ápice e o preparo da cavidade retrógrada com o auxílio do ultrassom Various 350 (NSKNakanishi Inc., Tóquio, Japão) e da ponta E32D (NSKNakanishi Inc., Tóquio, Japão). As raízes foram distribuídas, randomicamente, em quatro grupos experimentais (n=15): G1Ceramicrete, G2iRoot BP Plus, G3BioAggregate e G4ProRoot MTA branco. Como controle negativo (n=2) foram utilizados dentes hígidos, e como controle positivo (n=2), dentes acessados e com patência confirmada. Os cimentos reparadores foram manipulados seguindo as recomendações do fabricante e inseridos na cavidade retrógrada utilizando a mesma ponta ultrassônica usada no preparo. As amostras foram mantidas na presença de umidade por 72h para o completo endurecimento dos materiais. As raízes foram montadas em um dispositivo de dupla-câmara selada para a infiltração da glicose. Foram utilizados 0,75ml de solução de glicose a 1Mol/L na câmara superior e 0,75ml de água destilada na câmara inferior. Os dispositivos foram conectados a um sistema de distribuição de pressão, que permitiu a infiltração de 32 amostras em uma mesma etapa. A solução de glicose foi forçada apicalmente sob uma pressão de 15psi durante 1 hora. Uma alíquota de 10l foi coletada da câmara inferior para quantificar a glicose infiltrada. A concentração de glicose foi determinada com o auxílio do Kit GlucoseHK (Megazyme, Wicklow, Irlanda) e de um espectrofotômetro de luz visível (Campsec M330, Cambridge, Reino Unido) em um comprimento de onda de 340nm. O teste não-paramétrico Kruskal-Wallis e o teste Dunns foram utilizados na análise estatística. Os resultados encontrados demonstraram que houve diferença significativa entre os grupos experimentais (p=0,0036). O BioAggregate apresentou a maior concentração de glicose-1,85(g/L), seguido do ProRoot MTA-1,2; IRoot BP-0,85 e Ceramicrete-0,75. Não houve diferença entre os três novos cimentos reparadores e o material padrão-ouro (p>0,05). Não houve diferença entre Ceramicrete e iRoot BP Plus (p>0,05), porém estes foram estatisticamente diferentes do BioAggregate (p<0,05). Diante dos resultados obtidos, pode-se concluir que: nenhum dos cimentos testados foi capaz de promover selamento hermético; os três novos cimentos testados não revelaram o mesmo padrão de selamento; os três novos cimentos testados revelaram um padrão de selamento semelhante a do ProRoot MTA branco; e o Ceramicrete e o iRoot BP Plus apresentaram padrão de selamento superior em comparação com o BioAggregate.
Resumo:
65 p.
Resumo:
We determined the dis-tribution of multiple (n=68; 508−978 mm total length [TL]) striped bass (Morone saxatilis) along the estua-rine salinity gradient in the Mullica River−Great Bay in southern New Jersey over two years to determine the diversity of habitat use and the movements of striped bass. Ultrasoni-cally tagged fish were detected in this estuarine area by means of wireless hydrophones deployed at four gates inside the entrance of the study area and farther up to tidal freshwater (38 km). Numerous individuals frequently departed and returned to the estuary, primarily in the spring and late fall over periods of 15−731 days at liberty. The period of residency and degree of movement of individuals to and from the estuary varied extensively among seasons and years. The diversity of movements in and out of, as well as within, the estuary differed from the less-complex patterns reported in earlier studies, perhaps because of the comprehensive and synoptic nature of this study.
Resumo:
This is the report on the strategic fisheries stock assessment survey of the River Winster 1995 together with a coarse fish survey in 1994 and reference to the 1995 drought, produced by the Environment Agency North West in 1996. Salmonid production within the Winster catchment was dominated by trout although good densities of salmon juveniles were found on some main river sites. Despite suffering drought conditions for much of 1995, only salmon fry production appeared to have been affected. Coarse fish populations once found in the lower reaches of the Winster appear to have declined to very low levels with no fish sampled. This may be partly due to broken tidal gates allowing saline intrusion. It seems that the lower river was suited to the development of a recreational coarse fishery, now that the gates have been repaired. This report completes the strategic stock assessment surveys planned for the period 1992-1995. It represents the last major catchment that was surveyed to determine the current status of fisheries in the South and South West Cumbria areas.