850 resultados para Gall wasps
Resumo:
Two species of Deretrema (Zoogonidae) are reported from labrid fishes from the Great Barrier Reef. D. nahaense Yamaguti, 1942 is recorded from the gall-bladders of the labrids Thalassoma hardwicke (Bennett), T. jansenii (Bleeker), T. lunare (Linnaeus) and T. lutescens (Lay & Bennett). This species is recognised, despite having been formerly synonymised with D. pacificum Yamaguti, 1942. In addition to morphological distinction, D. nahaense appears to have strict host-specificity for the genus Thalassoma. D. woolcockae n.sp. is described from the gall-bladder of Hemigymnus fasciatus (Bloch). The new species is close to D. acutum Pritchard, 1963 and D. plotosi Yamaguti, 1940, but differs slightly in the distribution of the vitelline follicles, the sucker-ratio and the position of the cirrus-sac. In addition, this species also appears to have a distinct host-specificity, being restricted to one labrid species.
Resumo:
Magnetic resonance cholangiography (MRC) relies on the strong T-2 signal from stationary liquids, in this case bile, to generate images. No contrast agents are required, and the failure rate and risk of serious complications is lower than with endoscopic retrograde cholangiopancreatography (ERCP). Data from MRC can be summated to produce an image much like the cholangiogram obtained by using ERCP. In addition, MRC and conventional MRI can provide information about the biliary and other anatomy above and below a biliary obstruction. This provides information for therapeutic intervention that is probably most useful for hilar and intrahepatic biliary obstruction. Magnetic resonance cholangiography appears to be similar to ERCP with respect to sensitivity and specificity in detecting lesions causing biliary obstruction, and in the diagnosis of choledocholithiasis. It is also suited to the assessment of biliary anatomy (including the assessment of surgical bile-duct injuries) and intrahepatic biliary pathology. However, ERCP can be therapeutic as well as diagnostic, and MRC should be limited to situations where intervention is unlikely, where intrahepatic or hilar pathology is suspected, to delineate the biliary anatomy prior to other interventions, or after failed or inadequate ERCP. Magnetic resonance angiography (MRA) relies on the properties of flowing liquids to generate images. It is particularly suited to assessment of the hepatic vasculature and appears as good as conventional angiography. It has been shown to be useful in delineating vascular anatomy prior to liver transplantation or insertion of a transjugular intrahepatic portasystemic shunt. Magnetic resonance angiography may also be useful in predicting subsequent variceal haemorrhage in patients with oesophageal varices. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Endoparasitoid wasps produce maternal protein secretions, which are transported into the body of insect hosts at oviposition to regulate host physiology for successful development of their offspring. Venturia canescens calyx fluid contains so-called virus-like particles (VLPs) that are essential for immune evasion of the developing parasitoid inside the host. VLPs consist of four major proteins. In this paper, we describe the isolation and molecular cloning of a gene (vlp2) that is a constituent of VLPs and discuss its possible role in VLP structure and function.
Resumo:
Maternal protein secretions from endoparasitoid wasps are evolutionary adaptations to regulate host physiology as part of an extended wasp phenotype. Virus-like particles (VLPs) produced in the calyx region of Venturia canescens wasps are involved in immune evasion of the developing parasitoid inside the host. In contrast to polydnaviruses (PDVs), VcVLPs are devoid of any nucleic acids. To understand the role of these particles in the regulation of host physiology and phylogenetic relationship between VLPs and PDVs, it is essential to identify particle proteins. In this paper, we describe the isolation and molecular cloning of a neprilysin-like gene (VcNEP) coding for a 94 kDa VcVLP protein and discuss its possible role in host regulation.
Resumo:
Multipartite nucleic acid-containing virus-like particles, known as polydnaviruses, are special structures produced by female parasitoid wasps to deliver wasp components into the body of their host at oviposition. The particles confer protection for the developing parasitoid by passive and active means. Although several genes expressed from the circular DNA of these particles have been identified from various host-parasitoid systems, there is not much known about the structural proteins of these particles. Here we report on two genes encoding Cotesia rubecula particle proteins with similarities to molecular chaperones, calreticulin and heat-shock protein 70.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Our current, still limited, understanding of the comparative biology and evolution of polydnaviruses (PDVs) is reviewed, especially in the context of the possible origins of these parasitoid viruses and of their coevolution with carrier wasps. A hypothetical scenario of evolution of PDVs from ascovirus (or ascovirus-like) ancestors is presented, with examples of apparent extant transitional forms. PDVs appear, in the case of bracoviruses, to show phylogenetic relationships that mirror those of their wasp carriers: with ichno-viruses, the picture is less clear. Ongoing sequencing studies of entire PDV genomes from diverse wasp species are likely to greatly contribute to our understanding of PDV evolution. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The gregarious braconid wasp Cotesia congregata parasitizes host larvae of Manduca sexta, and several other sphingid species. Parasitism induces host immunosuppression due to the disruptive action of the wasp's polydnavirus (PDV) on host blood cells. During the initial stages of parasitism, these cells undergo apoptosis followed by cell clumping, which clears the hemolymph of a large number of cells. In this study, the persistence and expression of Cotesia congregata PDV (CcPDV) were examined using Southern and Nor-them blots, respectively. Digoxygenin-labelled total polydnaviral DNA was used to probe genomic DNA isolated from fat body and brains of hosts with emerged wasps taken 6 days following egress of the parasitoids, and significant cross-hybridization between the host fat body genomic DNA with viral DNA was seen. Thus, the virus persists in the host for the duration of parasitism. even during the post-emergence period, and may even be integrated in the host caterpillar DNA. Viral gene expression was examined using Northern blots and probes to the Cotesia rubecula CrV1 homolog, and the CrV1-like mRNAs were expressed as early as 4 h post-parasitization for at least 72 h and faint hybrization is even seen at the time the wasps eclose. In contrast, in Pieris rapae larvae the CrV1 transcript is expressed only for a brief time, during which time hemocyte function is disrupted. The effect is transitory, and hemocytes regain their normal functions after the parasites emerge as first instars. The genome of CcPDV contains one copy of the CrV1-like homolog as shown on Southern blots of viral genomic DNA. In conjunction with our earlier studies of the PDV-encoded early protein 1, the current work suggests multiple viral transcripts are produced following parasitization of the host. and likely target host hemocytes to induce their apoptosis, thereby preventing encapsulation of the parasitoid's eggs. Whether viral DNAs are integrated in the host's genomic DNA remains to be proven, but our results provide preliminary evidence that viral DNAs are detected in the host's fat body cells examined at the time of wasp ernergence and several days later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous study revealed that the swarm-founding wasp Polybia paulista is accurately able to distinguish nestmates from non-nestmates in the summer. However, the risk of accepting alien intruders is considered to be low in winter colonies, and additionally brood production is limited in 30-40% of colonies during the winter in this species. Thus, it is expected that colonies might lower their acceptance threshold and accept some conspecific wasps from alien colonies in winter. We conducted field experiments to examine tolerance of conspecific (nestmate and non-nestmate) females in winter. In contrast to our prediction, our colonies did not accept any individuals from alien colonies. We suggest that P. paulista exhibits the colony-specific acceptance threshold in winter, and colonies that produced brood in their nests may have raised the acceptance threshold even if the risk of accepting alien intruders is low in winter.
Resumo:
In insect societies, workers often try to challenge the reproductive monopoly of the queen by laying their own eggs. Successful worker reproduction, however, is frequently prevented by queen policing or worker policing, whereby either the mother queen or non-reproductive workers selectively kill worker-laid eggs. Recently, a third mechanism-""selfish"" worker policing-has also been described in which the workers selectively police worker-laid eggs but also lay eggs themselves. Here, we present results from the monogynous wasp Dolichovespula norwegica, which show that all three kinds of policing-queen policing, worker policing and ""selfish"" worker policing-co-occur. The net effect of these three kinds of policing collectively favoured the queen`s reproduction, as within 1 day 44% of the worker-laid eggs versus only 8% of the queen-laid eggs were eaten. Of the worker-laid eggs that were killed by workers, approximately two thirds were eaten by the reproductive workers even though these made up only a small proportion, 8%, of the work force. This means that policing workers obtained both direct fitness benefits as well as indirect (inclusive) fitness. In addition, we show that worker policing was carried out by a limited, specialised set of workers that was estimated to constitute approximately one quarter of the whole colony and of which 66% were non-reproductive.
Resumo:
Males of pollinating and some non-pollinating fig wasps are wingless and quite dissimilar to their co-specific females. Due to the accentuated sexual dimorphism, males and females of some fig wasp species were described in different genera. We used morphological sperm features obtained from male seminal vesicles and female spermathecas to associate sexes in three non-pollinating fig wasp species, genus Idarnes, that are associated with Ficus citrifolia in Brazil. Sperm obtained from each female morph species presented diagnostic features that led to the association with sperm obtained from males. This method can potentially be used to help enlighten taxonomic problems in other wasp species with sexual di- or polymorphism.
Resumo:
Neotropical swarm-founding wasps build nests enclosed in a covering envelope, which makes it difficult to count individual births and deaths. Thus, knowledge of worker demography is very limited for swarm-founding species compared with that for independent-founding species. In this study, we explored the worker demography of the swarm-founding wasp Polybia paulista, the colony size of which usually exceeds several thousand adults. We considered each wasp colony as an open-population and estimated the survival probability, recruitment rate, and population size of workers using the developments of the Cormack-Jolly-Seber model. We found that capture probability varied considerably among the workers, probably due to age polyethism and/or task specialization. The daily survival rate of workers was high (around 0.97) throughout the season and was not related to the phase of colony development. On the other hand, the recruitment rate ranged from 0 to 0.37, suggesting that worker production was substantially less important than worker survival in determining worker population fluctuations. When we compared survival rates among worker groups of one colony, the mean daily survival rate was lower for founding workers than for progeny workers and tended to be higher in progeny workers that emerged in winter. These differences in survivorship patterns among worker cohorts would be related to worker foraging activity and/or level of parasitism.
Resumo:
Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.
Resumo:
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.