201 resultados para Gabled Roofs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The purpose of this work is to increase the possibilities of designing building components for specific demands to increase the building’s value, and to investigate how the possibilities can be affected by automating the production process. Method: The theoretical framework, which this study is based on, was collected using literature studies and was thereafter combined with the empirics, which were retrieved from qualitative methods as interviews and planned observations. A case study was made of the building Ormhuset in Jönköping. Findings: The objective of this work is to investigate the possibilities for designing roofs by using new automation methods for the production process of wooden roof structures. This study implies that parametric design can be used to generate new innovative shapes and designs that are optimised according to specific criteria. Furthermore, an increased use of automation in the production process of wooden roof trusses result in cheaper roof trusses, regardless of their shapes. The generated optimized designs are therefore cheaper and easier to produce using more automation in the production process. Implications: If parametric design is used, almost any kind of shapes can be generated and optimised. To ensure manufacturability of a design, an early connection between architect and manufacturer is important. Furthermore, increased use of automation can lead to easier and faster production of roof trusses and investing in more automation can be relevant for companies with large production volumes. Using digital files to control the manufacturing machines is time saving. There are alternative manufacturing methods for advanced roof structurers in wood, which are better suited for production, which cannot be rationalized as for roof trusses. Constraints for increased automation are often a high investment cost and limited space. Limitations: If the study is performed on another case than Ormhuset and with other respondents, the result might have differed but could be similar, why this study is not generally valid but only shows one possible outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we advocate the use of geothermal pumps to cool the isolated houses that can be observed in the plain of Alentejo. Passive cooling of the houses, made for centuries, becomes insufficient when it aims to promote tourism in the region. The climatic characteristics of the region and the relatively high values of the thermal conductivity of the ground favour this type of use. The available land around the houses provide places where you can drill or make trenches to put the pipes under the surface . Some values of pipe lengths were obtained using values appropriate for the region. The need to try to preserve the shape of the typical houses of the region discourages the use of solar panels placed on the roofs. The length and time of use of the equipment is another factor to take into account in the analysis of the costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to evaluate the thermal efficiency of roofs used on individual shelters during milk-feeding stage of Girolando calves. The research was conducted at a farm located in a dry region of Pernambuco state, Brazil. The experimental design was completely randomized, with 27 Holstein × Gir dairy crossbred calves housed in shelters with three roofing materials (fibre cement tile, recycled tile, and thatched roofs). The recycled tiles and thatched roofs provided reductions of 18.7 and 14.6% in radiant thermal load, respectively. Regardless the roofing material, all animals increased their respiratory rate to maintain thermal equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global population growth reflects how humans increasingly exploited Earth's resources. Urbanization develops along with anthropization. It is estimated that nearly 60% of the world's population lives in urban areas, which symbolize the denaturalized dimension of current modernity. Cities are artificial ecosystems that suffer most from environmental issues and climate change. The Urban Heat Island (UHI) effect is a common microclimatic phenomenon affecting cities, which causes considerable differences between urban and rural areas temperatures. Among the driving factors, the lack of vegetation in urban settlements can damage both humans and the environment (health diseases, heat waves caused deaths, biodiversity loss, and so on). As the world continues to urbanize, sustainable development increasingly depends on successful management of urban areas. To enhance cities’ resilience, Nature-based Solutions (NbSs), are defined as an umbrella concept that encompasses a wide range of ecosystem-based approaches and actions to climate change adaptation (CCA) and disaster risk reduction (DRR). This paper analyzes a 15-days study on air temperature trends carried out in Isla, a small locality in the Maltese archipelago, and proposes Nature-based Solutions-characterized scenarios to mitigate the Urban Heat Island effect the Mediterranean city is affected by. The results demonstrates how in some areas where vegetation is present, lower temperatures are recorded than in areas where vegetation is absent or scarce. It also appeared that in one location, the specific type of vegetation does not contribute to high temperature mitigation, whereas in another one, different environmental parameters can influence the measurements. Among the case-specific Nature-based Solutions proposed there are vertical greening (green wall, façades, ground based greening, etc.), tree lines, green canopy, and green roofs.