920 resultados para GRAIN DISINFESTATION
Resumo:
Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The partial-dislocation-mediated processes have so far eluded high-resolution transmission electron microscopy studies in nanocrystalline nc Ni with nonequilibrium grain boundaries. It is revealed that the nc Ni deformed largely by twinning instead of extended partials. The underlying mechanisms including dissociated dislocations, high residual stresses, and stress concentrations near stacking faults are demonstrated and discussed.
Resumo:
The temperature behaviour of an Al bicrystal with surfaces consisting of (110) and (111) crystals is simulated using molecular dynamics. The result shows that the (110) crystal losses its crystalline order at 820K, whereas the disorder does not propagate through the (111) crystal at this temperature. Instead, some disordered atoms are recrystallized into the (111) crystal and the initial grain boundary changes into a stable order-disorder interface. Thus, it was discovered that at a temperature near its melting point, the (111) crystal grew and obstructed the propagation of disorder. Such an obstruction is helpful for understanding melting.
Resumo:
A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.
Resumo:
Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.
Resumo:
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.
Resumo:
The microstructural evolution during surface mechanical attrition treatment of cobalt (a mixture of hexagonal close packed (hep) and face-centered cubic (fcc) phases) was investigated. In order to reveal the mechanism of grain refinement and strain accommodation. The microstructure was systematically characterized by both cross-sectional and planar-view transmission electron microscopy. In the hcp phase, the process of grain refinement. Accompanied by an increase in strain imposed in the surface layer. Involved: (1) the onset of 110 111 deformation twinning, (2) the operation of (1 120) 110 1 0} prismatic and (1 120) (000 1) basal slip, leading to the formation of low-angle dislocation boundaries, and (3) the successive subdivision of grains to a finer and finer scale. Ressulting in the formation of highly misoriented nanocrystalline grains. Moreover. The formation of nanocrystalliies at the grain boundary and triple junction was also observed to occur concurrently with straining. By contrast. The fec phase accommodated strain in a sequence as follows: (1) slip of dislocations by forming intersecting planar arrays of dislocations, (2) {1 1 1} deformation twinning, and (3) the gamma(fcc) --> epsilon(hcp) martensitic phase transformation. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization occurring in the hep phase and the gamma --> E: martensitic transformation in the fcc phase as well.
Resumo:
Thin films of inorganic materials are used in diverse applications, typically in polycrystalline form due to their relatively simple production. We have used enhanced piezoresponse force microscopy to investigate the domain distribution within neighbouring grains in thin polycrystalline films of the ferroelectric-ferroelastic system lead zirconate titanate (PZT). We demonstrate that domains are organized into areas with a correlated alignment of the ferroelastic and ferroelectric domains, spanning multiple grain boundaries. We present five typical arrangements of such structures: azimuthal, radial, gradient, and short- and long- range linear domain organizations. Moreover, we discuss the mechanical and electrical constraints that dictate these structures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.