415 resultados para GLUCOSIDASE
Resumo:
Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 mu M); CAL2 (17 kDa, pHo 5.5, km 11 mu M Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM L-Leucine-p-nitroanilide), alpha-glucosidase (90 kDa, pHo 5.0, km 5 mM with p-nitrophenyl alpha-D-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
Thermoascus aurantiacus is able to secrete most of the hemicellulolytic and cellulolytic enzymes. To establish the xylanase inducers of T. aurantiacus, the mycelia were first grown on glucose up until the end of the exponential growth phase, followed by washing and re-suspension in a basal medium without a carbon source. Pre-weighed amounts of xylose (final concentration of 3.5 mg/ml), xylobiose (7 mg/ml) and hydrolyzed xylan from sugarcane bagasse (HXSB) which contained xylose, xylobiose and xylotriose (6.8 mg/ml) were evaluated as inducers of xylanase. It was observed that xylose did not suppress enzyme induction of T. aurantiacus when used in low concentrations, regardless of whether it was inoculated with xylobiose. Xylobiose promoted fast enzyme production stopping after 10 h, even at a low consumption rate of the carbon source; therefore xylobiose appears to be the natural inducer of xylanase. In HXSB only a negligible xylanase activity was determined. Xylose present in HXSB was consumed within the first 10 h while xylobiose was partially hydrolyzed at a slow rate. The profile of alpha-arabinofuranosidase induction was very similar in media induced with xylobiose or HXSB, but induction with xylose showed some positive effects as well. The production profile for the xylanase was accompanied by low levels of cellulolytic activity. In comparison, growth in HXSB resulted in different profiles of both xylanase and cellulase production, excluding the possibility of xylanase acting as endoglucanases.
Resumo:
Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular beta-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. beta-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 A degrees C and 3.0-5.5, respectively. beta-xylosidase was stable in acidic pH (3.0-6.0) and 70 A degrees C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %) and MgCl2 (20 %) salts. The beta-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-beta-d-xylopyranoside, exhibiting apparent K-m and V-max values of 0.66 mM and 39 U (mg protein)(-1) respectively, and to a lesser extent p-nitrophenyl-beta-d-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel beta-d-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by beta-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.
Resumo:
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
Resumo:
Abstract Background Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils. Results In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of β-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g). Conclusions SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.
Resumo:
Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.
Resumo:
Abstract BACKGROUND: There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. RESULTS: The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. CONCLUSIONS: The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.
Resumo:
Die vorgestellten Arbeiten bezüglich der Biosynthese von pflanzlichen Indolalkaloiden können in einen molekularbiologischen und einen proteinche-mischen Teil aufgegliedert werden. Im molekularbiologischen Abschnitt stand die Entwicklung eines Vektorsystems im Vordergrund, das die gleichzeitige Expression mehrerer Enzyme in bakteriellen Kulturen erlaubte. Hierfür konnte zunächst die cDNA der Strictosidin-Synthase aus Rauvolfia serpentina in den Expressionsvektor pQE-70 einkloniert und das Protein aktiv exprimiert werden. Bevor es zum Einbau des Strictosidin-β-D-Glucosidase-Gens –ebenfalls aus Rauvolfia serpentina– kam, musste dessen Aktivität mit einer vorgeschalteten Ribosomenbindestelle sichergestellt werden. Diese zusätzliche Binderegion wurde an das 5’-Ende der cDNA angefügt, um die ungestörte Expression des Enzyms im späteren Coexpressions-System zu gewährleisten. Im Hinblick auf weiterführende Arbeiten in Bezug auf die komplette in vitro-Synthese bereits bekannter Alkaloide, wie z.B. das antiarrhythmisch wirkende Ajmalin oder das antihypertensiv wirkende Heteroyohimbin-Alkaloid Raubasin, wurde die ursprüngliche multiple-clonig-site des verwendeten Expressionsvektors pQE-70 um 27 zusätzliche Restriktionsschnittstellen (verteilt auf 253 bp) erweitert. Nach erfolgreicher Ligation der Strictosidin-β-D-Glucosidase-cDNA mit vorgeschalteter Ribosomenbindestelle an das 3’-Ende des Strictosidin-Synthase-Gens gelang die heterologe Coexpression beider Enzyme in einer homogenen Suspensionskultur des E. coli-Expressionsstamms M15. Dafür wurde das Vektorkonstrukt pQE-70bh-STR-RBS-SG entwickelt. Das Endprodukt der anschließenden enzymatischen Umsetzung von Tryptamin und Secologanin wurde über das Zwischenrodukt Strictosidin gebildet und konnte als Cathenamin identifiziert werden. Im proteinchemischen Teil der Dissertation wurde die Reinigung einer Cathenamin-Reduktase aus Zellsuspensionskulturen von Catharanthus roseus RC mit dem Ziel der partiellen Bestimmung der Aminosäuresequenz bearbeitet. Das gesuchte Enzym wandelte in einer NADPH-abhängigen Reaktion das Edukt Cathenamin in Raubasin um. Des weiteren wurde untersucht, wie viele Enzyme insgesamt an der Umwandlung von Cathenamin zu Raubasin und den eng verwandten Produkten Tetrahydroalstonin und 19-Epi-Raubasin beteiligt waren. Unter Anwendung eines hierfür entwickelten säulenchromatographischen Protokolls gelang die Reinigung einer Raubasin-bildenden Reduktase, deren Teilsequenz jedoch noch nicht bestimmt werden konnte. Die Anzahl der beteiligten Enzyme bei der Ausbildung von Raubasin, Tetrahydroalstonin und 19-Epi-Raubasin konnte auf mindestens zwei beziffert werden.
Resumo:
Crop elicitation: innovative approach for the valorization of grain legume functional properties. In Italy grain legume cultivation has encountered a drastic decrease due to several causes (productive, economic, social). In this regard, studies aimed at the setting up of agronomic techniques able to guarantee high and constant in planta yields of health-promoting compounds may concur at re-launching legume production. In this context, 22 accessions of grain legumes (17 Phaseolus vulgaris, 3 Phaseolus coccineus, 1 Vigna unguiculata and 1 Glycine max genotypes) were screened with the aim of identifying genotypes rich in health beneficial phytochemicals (α-amylase inhibitors, α -glucosidase inhibitors, polyphenols) and with low anti-nutritional compounds (lectins). A wide variability was observed among investigated accessions. Four genotypes (Verdone, Kidney Cina, Roviotto and DG) showed a α -amylase inhibitory activity significantly higher (approximately 30% more) than all other tested accessions. The α -amylase inhibitory activity was not correlated neither with the protein nor with the polyphenol contents. Conversely, the α -glucosidase inhibitory activity was positively correlated with grain color and polyphenol content: dark-colored seeds had a mean inhibitory activity of 83.64 ± 22.07%, whereas light-colored seeds had mean values of 21.11 ± 9.36%. As regards the anti-nutritional compounds, out of all common bean accessions, only DG showed no erythro-agglutination activity (lectins). Preliminary experiments, performed in controlled environment, permitted to highlight that different germination conditions markedly affect the synthesis and accumulation of functional compounds in legume seedlings. Those findings were confirmed with field trials performed in two different locations (Bologna and Pisa), on two bean genotypes (Verdone and Zolfino), during the 2004-2005 cropping season. Results showed that the application of abiotic stresses (no fertilization and /or no irrigation) lead to a significant increase of flavonoids in grains, but a decrease (up to 50%) in legume yields was also observed. Crop elicitation, even if valuable for boosting health-promoting compound synthesis in crops, must necessary cope with economically acceptable crop yields.
Resumo:
Kristallisation der Arbutin-Synthase und der Strictosidin Glukosidase - zwei Enzyme aus dem sekundären Glykosidstoffwechsel von Rauvolfia serpentina Die vorliegende Arbeit befasst sich mit der Kristallisation und der strukturellen Auswertung der Arbutin-Synthase (AS) und der Strictosidin Glukosidase (SG). Beide Enzyme stammen aus der Medizinalpflanze Rauvolfia serpentina. Für die Kristallisation der Arbutin-Synthase wurden ca. 2500 verschiedene Beding-ungen experimentell untersucht. Für einige dieser Experimente wurde das Enzym molekularbiologisch und chemisch verändert. Trotzdem konnten keine Kristalle erhalten werden. Die bei diesen Veränderungen erhaltenen Ergebnisse wurden anhand von Vergleichen mit Strukturen anderer Glykosyltransferasen der gleichen Familie analysiert. Bei der Reinigung der AS konnte mit verschiedenen Trennsystemen nie eine homogene Lösung produziert werden. Der wahrscheinliche Grund für diese schlechte Isolierbarkeit, und damit der wahrscheinliche Grund für die schwierige Kris-tallisation, liegt in der überdurchschnittlich hohen Anzahl an Cysteinen in der Proteinsequenz. Mit den Aminosäuren Cys171, Cys253 und Cys461 wurden drei Cysteine gefunden, die einem Strukturvergleich nach an der Proteinoberfläche liegen und möglicherweise durch Quervernetzungen mit anderen Proteinmolekülen ein heterogenes Gemisch bilden, das nicht geordnet kristallisieren kann. Durch gezielte Mutationen dieser drei Aminosäuren könnte die Kristallisation zukünftig ermöglicht werden. Für die SG waren bereits Bedingungen bekannt bei denen nicht vermessbare Enzymkristalle (Nadeln) wuchsen. In weit gefächerten Versuchen konnten diese Kristalle jedoch nicht zu 3D-Wachstum angeregt werden. Es wurden mit einem HTS-Screening neue Bedingungen zur Kristallisation gefunden. Anschließend konnten die native Struktur und der Strictosidin/Enzym-Komplex vermessen und aufgeklärt werden. Die SG gehört zur Familie 1 der Glukosidasen (GH-1) und besitzt die in dieser Familie konservierte (beta/alpha)8-Barrel-Faltung. Im Vergleich mit 16 bekannten Glykosidasen der Familie GH-1 wurde die Substratbindung untersucht. Dabei wurde die in der Familie konservierte Zuckerbindung vorgefunden, jedoch große Unterschiede in der Aglykonbindung entdeckt. Es wurden Bedingungen für die Konformationsänderung des Trp388 erkannt. Diese Konformationsänderung dirigiert den Aglykonteil des Substrates auf verschiedene Seiten der Substratbindungstasche und teilt so die Familie GH-1 in zwei Gruppen.
Resumo:
The needed of new intermediates/products for screening in the fields of drug discovery and material science is the driving force behind the development of new methodologies and technologies. Organic scaffolds are privileged targets for this scouting. Among them a priority place must be attributed to those including nitrogen functionalities in their scaffolds. It comes out that new methodologies, allowing the introduction of the nitrogen atom for the synthesis of an established target or for the curiosity driven researches, will always be welcome. The target of this PhD Thesis’ work is framed within this goal. Accordingly, Chapter 1 reports the preparation of new N-Heteroarylmethyl 3-carboxy-5-hydroxy piperidine scaffold, as potential and selective α-glucosidase inhibitors. The proposed reversible uncompetitive mechanism of inhibition makes them attractive as interesting candidate for drug development. Chapter 2 is more environmentally method-driven research. Eco-friendly studies on the synthesis of enantiomerically pure 1,4-dihydropyridines using “solid” ammonia (magnesium nitride) is reported via classical Hantzch method. Chapter 3 and Chapter 4 may be targeted as the core of the Thesis’s research work. Chapter 3 reports the studies addressed to the synthesis of N-containing heterocycles by using N-trialkylsilylimine/hetero-Diels–Alder (HAD) approach. New eco-friendly methodology as MAOS (Microwave Assisted Organic Synthesis) has been used as witness of our interest to a sustainable chemistry. Theoretical calculations were adopted to fully clarify the reaction mechanism. Chapter 4 is dedicated to picture the most recent studies performed on the application of N-Metallo-ketene imines (metallo= Si, Sn, Al), relatively new intermediates which are becoming very popular, in the preparation of highly functionalized N-containing derivatives, accordingly to the Thesis’ target. Derivatives obtained are designed in such a way that they could be of interest in the field of drug and new material chemistry.