397 resultados para GHOST PROPAGATORS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ameloblastomatous epithelium containing clusters of ghost cells is the typical histopathology of calcifying cystic odontogenic tumor (CCOT). This paper aimed to assess keratins AE1-AE3, K7, K10/13, K14, K18, K19, vimentin, laminin, and collagen IV in 08 CCOTs to discuss their histopathogenesis. Similarity to the immunoprofile of the stratified squamous epithelium was seen in the with the basal layer expressing K14 and the upper cells expressing K10/13. When compared to the immunoprofile of the normal odontogenic epithelium, of odontogenic tumor epithelia and of the ghost cells described in the literature, it was possible to suggest that the CCOT epithelium differentiates towards squamous type.
Resumo:
The reproductive cycle and recruitment period of a ghost crab population from Ubatuba, São Paulo, Brazil were investigated by means of examining the developmental stages of gonads of breeding crabs and the ingress of young recruits to the studied population. Monthly collections over a one-year period were carried out during nocturnal low-tide periods at Vermelha beach. The morphology of the abdomen and pleopods was used for sex determination. All captured crabs were measured for carapace width and dissected for the determination of the development stage of the gonads. A total of 582 specimens was captured: 271 males, 241 females, and 70 juveniles. Size ranged from 8.5 to 37.5 mm for males, from 9.5 to 39.2 mm for females, and from 5.8 to 12 mm for early juveniles. Median size of males and females did not differ statistically. The frequency of ovigerous females was markedly low. The onset of sexual maturity in females is achieved at around 23 mm of carapace width. Mature females with advanced gonad stages were not recorded from May to September. Recruitment of young was highest during summer, but the presence of early and late juvenile specimens throughout the year indicates that continuous recruitment is taking place in the studied population.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three-dimensional quadratic gravity, unlike general relativity in (2+1)D, is dynamically nontrivial and has a well behaved nonrelativistic potential. Here we analyse the changes that occur when a topological Chem-Simons term is added to this theory. It is found that the harmless massive scalar mode of the latter gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin 2. We also found that light deflection does not have the 'wrong sign' such as in the framework of three-dimensional quadratic gravity.
Resumo:
Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.
Resumo:
Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices - prescriptions - some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. and this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).
Resumo:
The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we compute the most general massive one-loop off-shell three-point vertex in D-dimensions, where the masses, external momenta and exponents of propagators are arbitrary. This follows our previous paper in which we have calculated several new hypergeometric series representations for massless and massive (with equal masses) scalar one-loop three-point functions, in the negative dimensional approach.
Resumo:
In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of the external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time is D. Our approach reproduces the known results; it produces other solutions as yet unknown in the literature as well. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories.
Resumo:
We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.
Resumo:
The well-known D-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative-dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.
Resumo:
The negative-dimensional integration method is a technique which can be applied, with success, in usual covariant gauge calculations. We consider three two-loop diagrams: the scalar massless non-planar double-box with six propagators and the scalar pentabox in two cases, where six virtual particles have the same mass, and in the case all of them are massless. Our results are given in terms of hypergeometric functions of Mandelstam variables and also for arbitrary exponents of propagators and dimension D.