965 resultados para GENE-ENCODING TANNASE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The green alga Chlamydomonas reinhardtii mutant 76–5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76–5EN to explore the possibility of increasing Rubisco expression. Genetic analysis of 10 revertants revealed that most arose from suppressor mutations in nuclear genes distinct from the original 76–5EN mutant gene. The revertant strains have regained various levels of Rubisco holoenzyme, but none of the suppressor mutations increased Rubisco expression above the wild-type level in either the presence or absence of the 76–5EN mutation. One suppressor mutation, S107–4B, caused a temperature-conditional, photosynthesis-deficient phenotype in the absence of the original 76–5EN mutation. The S107–4B strain was unable to grow photosynthetically at 35°C, but it expressed a substantial level of Rubisco holoenzyme. Whereas the 76–5EN gene encodes a nuclear factor that appears to be required for the transcription of the Rubisco large-subunit gene, the S107–4B nuclear gene may be required for the expression of other chloroplast genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endopolyphosphatases (Ppn1) from yeast and animal cells hydrolyze inorganic polyphosphate (poly P) chains of many hundreds of phosphate residues into shorter lengths. The limit digest consists predominantly of chains of 60 (P60) and 3 (P3) Pi residues. Ppn1 of Saccharomyces cerevisiae, a homodimer of 35-kDa subunits (about 352-aa) is of vacuolar origin and requires the protease activation of a 75-kDa (674-aa) precursor polypeptide. The Ppn1 gene (PPN1) now has been cloned, sequenced, overexpressed, and deleted. That PPN1 encodes Ppn1 was verified by a 25-fold increase in Ppn1 when overexpressed under a GAL promoter and also by several peptide sequences that match exactly with sequences in a yeast genome ORF, the mutation of which abolishes Ppn1 activity. Null mutants in Ppn1 accumulate long-chain poly P and are defective in growth in minimal media. A double mutant of PPN1 and PPX1 (the gene encoding a potent exopolyphosphatase) loses viability rapidly in stationary phase. Whether this loss is a result of the excess of long-chain poly P or to the lack of shorter chains (i.e., poly P60 and P3) is unknown. Overexpression of the processed form of Ppn1 should provide a unique and powerful reagent to analyze poly P when the chain termini are unavailable to the actions of polyPase and poly P kinase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The selective production of monoclonal antibodies (mAbs) reacting with defined cell surface-expressed molecules is now readily accomplished with an immunological subtraction approach, surface-epitope masking (SEM). Using SEM, prostate carcinoma (Pro 1.5) mAbs have been developed that react with tumor-associated antigens expressed on human prostate cancer cell lines and patient-derived carcinomas. Screening a human LNCaP prostate cancer cDNA expression library with the Pro 1.5 mAb identifies a gene, prostate carcinoma tumor antigen-1 (PCTA-1). PCTA-1 encodes a secreted protein of approximately 35 kDa that shares approximately 40% sequence homology with the N-amino terminal region of members of the S-type galactose-binding lectin (galectin) gene family. Specific galectins are found on the surface of human and marine neoplastic cells and have been implicated in tumorigenesis and metastasis. Primer pairs within the 3' untranslated region of PCTA-1 and reverse transcription-PCR demonstrate selective expression of PCTA-1 by prostate carcinomas versus normal prostate and benign prostatic hypertrophy. These findings document the use of the SEM procedure for generating mAbs reacting with tumor-associated antigens expressed on human prostate cancers. The SEM-derived mAbs have been used for expression cloning the gene encoding this human tumor antigen. The approaches described in this paper, SEM combined with expression cloning, should prove of wide utility for developing immunological reagents specific for and identifying genes relevant to human cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian eggs are surrounded by a thick extracellular coat, the zona pellucida, that plays important roles during early development. The mouse egg zona pellucida is constructed of three glycoproteins, called mZP1, mZP2, and mZP3. The gene encoding mZP3 is expressed only by growing oocytes during a 2- to 3-week period of oogenesis. Here, the mZP3 gene was disrupted by targeted mutagenesis using homologous recombination in mouse embryonic stem cells. Viable female mice homozygous for the mutated mZP3 allele (mZP3-/-) were obtained. These mice are indistinguishable in appearance from wild-type (mZP3+/+) and heterozygous (mZP3+/-) littermates. However, although ovaries of juvenile and adult mZP3-/- females possess growing and fully grown oocytes, the oocytes completely lack a zona pellucida. Consistent with this observation, eggs recovered from oviducts of superovulated, adult mZP3-/- females also lack a zona pellucida. Thus far, mZP3-/- females mated with wild-type males have failed to become pregnant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In gene therapy to treat cancer, typically only a fraction of the tumor cells can be successfully transfected with a gene. However, in the case of brain tumor therapy with the thymidine kinase gene from herpes simplex virus (HSV-tk), not only the cells transfected with the gene but also neighboring others can be killed in the presence of ganciclovir. Such a "bystander" effect is reminiscent of our previous observation that the effect of certain therapeutic agents may be enhanced by their diffusion through gap junctional intercellular communication (GJIC). Herein, we present the evidence, from in vitro studies, that gap junctions could indeed be responsible for such a gene therapy bystander effect. We used HeLa cells for this purpose, since they show very little, if any, ability to communicate through gap junctions. When HeLa cells were transfected with HSV-tk gene and cocultured with nontransfected cells, only HSV-tk-transfected HeLa cells (tk+) were killed by ganciclovir. However, when HeLa cells transfected with a gene encoding for the gap junction protein, connexin 43 (Cx43), were used, not only tk+ cells, but also tk- cells were killed, presumably due to the transfer, via Cx43-mediated GJIC, of toxic ganciclovir molecules phosphorylated by HSV-tk to the tk- cells. Such bystander effect was not observed when tk+ and tk- cells were cocultured without direct cell-cell contact between those two types of cells. Thus, our results give strong evidence that the bystander effect seen in HSV-tk gene therapy may be due to Cx-mediated GJIC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental strategy to facilitate correction of single-base mutations of episomal targets in mammalian cells has been developed. The method utilizes a chimeric oligonucleotide composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends. The RNA/DNA sequence is designed to align with the sequence of the mutant locus and to contain the desired nucleotide change. Activity of the chimeric molecule in targeted correction was tested in a model system in which the aim was to correct a point mutation in the gene encoding the human liver/bone/kidney alkaline phosphatase. When the chimeric molecule was introduced into cells containing the mutant gene on an extrachromosomal plasmid, correction of the point mutation was accomplished with a frequency approaching 30%. These results extend the usefulness of the oligonucleotide-based gene targeting approaches by increasing specific targeting frequency. This strategy should enable the design of antiviral agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutations in the gene encoding the endothelin receptor type B (EDNRB) produce congenital aganglionic megacolon and pigment abnormalities in mice and humans. Here we report a naturally occurring null mutation of the EDNRB gene in spotting lethal (sl) rats, which exhibit aganglionic megacolon associated with white coat color. We found a 301-bp deletion spanning the exon 1-intron 1 junction of the EDNRB gene in sl rats. A restriction fragment length polymorphism caused by this deletion perfectly cosegregates with the sl phenotype. The deletion leads to production of an aberrantly spliced EDNRB mRNA that lacks the coding sequence for the first and second putative transmembrane domains of the G-protein-coupled receptor. Radioligand binding assays revealed undetectable levels of functional EDNRB in tissues from homozygous sl/sl rats. We conclude that EDNRB plays an essential role in the normal development of two neural crest-derived cell lineages, epidermal melanocytes and enteric neurons, in three mammalian species--humans, mice, and rats. The EDNRB-deficient rat may also prove valuable in defining the postnatal physiologic role of this receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inheritance of much early-onset Alzheimer disease (AD) has been linked to a dominant-acting locus on chromosome 14. Recently, the gene likely responsible for this genetic linkage has been identified and termed AD3. Five mutations have been found in AD3 that segregate with the disease phenotype in seven AD families and are not present in unaffected individuals. Here we report the existence of a gene encoding a seven transmembrane domain protein very similar to that encoded by AD3 in structure and sequence. This gene is located on chromosome 1, is expressed in a variety of tissues, including brain, and is predicted to harbor mutations causing nonchromosome 14 familial AD. The presence of several S/TPXX DNA binding motifs in both the AD3 protein and the AD3-like protein /AD4 protein suggests a possible role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. Ways in which mutations in either gene could lead to AD are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gene encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) has been proposed recently as a candidate gene for the mouse severe combined immune deficiency (scid) locus. We have used a partial cDNA clone for human DNA-PKcs to map the mouse homologue using a large interspecific backcross panel. We found that the mouse gene for DNA-PKcs does not recombine with scid, consistent with the hypothesis that scid is a mutation in the mouse gene for DNA-PKcs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The beta 1-6 structure of N-linked oligosaccharides, formed by beta-1,6-N-acetylglucosaminyltransferase (GnT-V), is associated with metastatic potential. We established a highly metastatic subclone, B16-hm, from low metastatic B16-F1 murine melanoma cells. The gene encoding beta-1,4-N-acetylglucosaminyltransferase (GnT-III) was introduced into the B16-hm cells, and three clones that stably expressed high GnT-III activity were obtained. In these transfectants, the affinity to leukoagglutinating phytohemagglutinin was reduced, whereas the binding to erythroagglutinating phytohemagglutinin was increased, indicating that the level of beta 1-6 structure was decreased due to competition for substrate between intrinsic GnT-V and ectopically expressed GnT-III. Lung metastasis after intravenous injection of the transfectants into syngeneic and nude mice was significantly suppressed, suggesting that the decrease in beta 1-6 structure suppressed metastasis via a mechanism independent of the murine system. These transfectants also displayed decreased invasiveness into Matrigel and inhibited cell attachment to collagen and laminin. Cell growth was not affected. Our results demonstrate a causative role for beta 1-6 branches in invasion and cell attachment in the extravasation stage of metastasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gene encoding the glycolytic enzyme triose-phosphate isomerase (TPI; EC 5.3.1.1) has been central to the long-standing controversy on the origin and evolutionary significance of spliceosomal introns by virtue of its pivotal support for the introns-early view, or exon theory of genes. Putative correlations between intron positions and TPI protein structure have led to the conjecture that the gene was assembled by exon shuffling, and five TPI intron positions are old by the criterion of being conserved between animals and plants. We have sequenced TPI genes from three diverse eukaryotes--the basidiomycete Coprinus cinereus, the nematode Caenorhabditis elegans, and the insect Heliothis virescens--and have found introns at seven novel positions that disrupt previously recognized gene/protein structure correlations. The set of 21 TPI introns now known is consistent with a random model of intron insertion. Twelve of the 21 TPI introns appear to be of recent origin since each is present in but a single examined species. These results, together with their implication that as more TPI genes are sequenced more intron positions will be found, render TPI untenable as a paradigm for the introns-early theory and, instead, support the introns-late view that spliceosomal introns have been inserted into preexisting genes during eukaryotic evolution.