270 resultados para GALVANOSTATIC ELECTROOXIDATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry is one of the largest consumers of natural raw materials, and concrete is considered today the most used material wide. This accentuated consumption of natural resources has generated concern with the preservation of the environment, and has motivated various studies related to the use of resid ues, which can partially or entirely substitute, with satisfactory performance, some materials such as the aggregate, and in so doing, decrease the impact on the environment caused by the produced residues. Research has been done to better understand and improve the microstructure of concrete, as well as to understand the mechanism of corrosion in reinforced steel. In this context, this work was developed aiming at discovering the influence of the substitution of natural sand by artificial sand, with rega rd to mechanical resistance, microstructure, and durability. To obtain the electrochemical parameters, an adaptation was made to the galvanostatic electrochemical method to study the corrosion in reinforced steel. Concretes of categories 20 MPa and 40 MPa were produced, containing natural sand, and concretes of the same categories were produced with artificial sand substituting the natural sand, and with the addition of sodium nitrate and sodium chloride. Due to the use of rock dust reject (artificial sand), an evaluation was made of its environmental risk. The results indicate that the concretes of category 20 MPa present a better performance than the concrete made with natural sand, thus making it a viable substitute. For the category 40 MPa, the better performance is from the concrete containing natural sand. The adaptation of the galvanostatic electrochemical technique to the study of the corrosion of reinforced steel within concrete proved to be valid for obtaining electrochemical parameters with a high degree of reliability, considering the number of degrees of freedom

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the presence of tartrate additive on the chemical stability of a Cu-Sn acid bath was evaluated. It was observed that this additive hinders decomposition of the Cu/Sn deposition bath with storage time, since the decrease in electrochemical efficiency was attenuated. In addition, it was observed that optimal galvanostatic deposition with or without tartrate occurs at approximately 11 mA cm(-2). However, in the presence of tartrate the deposition charge was lower, leading to lower energy consumption. SEM analysis showed that the tartrate added to the plating bath caused a marked change in the morphology of the Cu/Sn films obtained gal vanostatic ally. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levodopa (L-dopa), the biological precursor of catecholamines, is the most widely prescribed drug in the treatment of Parkinson's disease. The present work presents a proposal for the application of a gold screen-printed electrode an electrochemical sensor for monitoring L-dopa in stationary solution and a flow system. Using the electrooxidation of L-dopa at +0.63 V in acetate buffer pH 3.0 on a gold screen-printed electrode it is possible to obtain a linear calibration curve from 9.9 x 10(-5) to 1.2 x 10(-3) mol L-1 and a detection limit of 6.8 x 10(-5) mol L-1. Under amperometric conditions (E-app = 0.8 V; flow rate = 14.1 ml, min(-1); pH 3.0), an analytical calibration graph for L-dopa was obtained from 1.0 x 10(-6) mol L-1 6.6 x 10(-4) mol L-1 with a detection limit of 9.9 x 10(-7) mol L-1. The method was successfully applied to the determination of L-dopa in commercial dosage forms without any pre-treatment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primaquine, an antimalarial drug, presents a well-defined oxidation peak around +0.6V vs SCE at a glassy carbon electrode that can be used for its determination. Calibration graphs were obtained for primaquine in B-R buffer pH 4.0 from 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using linear-scan voltammetry and 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using differential pulse or square-wave voltammetry. The correspondent detection limits was 9.4 mu g mL(-1); 4.2 and 1.8 mu g mL(-1), respectively. All the voltammetric methods were applied with success in direct determination of the primaquine in commercial tablets without separation or extraction procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical oxidation of cyanide in alkaline media was studied at different pH levels on SnO2 doped with Sb supported on titanium, at 25 degrees C, the electrooxidation of CN- at constant current follows a first-order rate law with a half life of t(1/2) = 35 min on SnO2-SbOx electrodes and t(1/2) = 69 min on SnO2-SbOx-RuO2 electrodes, in K2SO4(aq), pH 12, the reaction rate increases with the applied current and tends to reach a plateau when j > 20 mA cm(-2), In the pH range 10-13.5 the reaction rate diminishes as pH is increased owing to an increasing competition between CN- and OH- ions for the electrode surface. Addition of chloride to the solution does not alter the rate law but increases the reaction rate, A mechanism is proposed to explain the observed behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous deposition and electrochemical deposition by potential perturbation programs were used to place cerium-containing species on platinum surfaces in acid solution. Cyclic voltammetric profiles of cerium-modified platinum surfaces obtained after potentiostatic or potentiodynamic procedures (applied in the true hydrogen evolution region) differ from those recorded after spontaneous methods. However, the catalytic effects are nearly the same on these cerium-modified platinum surfaces for methanol electrooxidation, i.e. lower onset potential values for the anodic reaction. Besides, a different electrocatalytic effect was observed at large positive potentials on methanol oxidation due to the cerium oxide capability of oxygen storage. This effect is observed on platinum modified by a drastic potentiostatic procedure (by applying -2.0 V) in cerium(IV) acid solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and electrochemical characterization of a carbon paste electrode modified with N.N′-ethylenebis(salicylideneiminato) oxovanadium(IV) complex ([VO(Salen)]) as well as its behavior as electrocatalyst toward the oxidation of dipyrone were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of dipyrone were explored using cyclic voltammetry. The voltammetric response of the modified electrode is based on two reactions. One electrochemical related to the oxidation of the metallic center of the [VO(Salen)] and the other involving the chemical redox process involving the oxidized form of the complex and the reduced form of dipyrone. The best voltammetric response was observed for a paste composition of 25% (m/m) [VO(Salen)], KCl solution pH from 5.5 to 8.0 as the electrolyte and potential scan rate of 10 mV s-1 in the presence of dipyrone. A linear voltammetric response for dipyrone was obtained in the concentration range from 9.9 × 106 to 2.8 × 10 -3 mol L-1, with a detection limit of 7.2 × 10 -6 mol L-1. Among of several compounds tested as potential interference, only ascorbic acid presented some interference. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.