279 resultados para Fuites de nitrates
Resumo:
Nutrient leaching studies are expensive and require expertise in water collection and analyses. Less expensive or easier methods that estimate leaching losses would be desirable. The objective of this study was to determine if anion-exchange membranes (AEMs) and reflectance meters could predict nitrate (NO3-N) leaching losses from a cool-season lawn turf. A two-year field study used an established 90% Kentucky bluegrass (Poa pratensis L.)-10% creeping red fescue (Festuca rubra L.) turf that received 0 to 98 kg N ha-1 month-1, from May through November. Soil monolith lysimeters collected leachate that was analyzed for NO3-N concentration. Soil NO3-N was estimated with AEMs. Spectral reflectance measurements of the turf were obtained with chlorophyll and chroma meters. No significant (p > 0.05) increase in percolate flow-weighted NO3-N concentration (FWC) or mass loss occurred when AEM desorbed soil NO3-N was below 0.84 µg cm-2 d-1. A linear increase in FWC and mass loss (p < 0.0001) occurred, however, when AEM soil NO3-N was above this value. The maximum contaminant level (MCL) for drinking water (10 mg L-1 NO3-N) was reached with an AEM soil NO3-N value of 1.6 µg cm-2 d-1. Maximum meter readings were obtained when AEM soil NO3 N reached or exceeded 2.3 µg cm-2 d-1. As chlorophyll index and hue angle (greenness) increased, there was an increased probability of exceeding the NO3-N MCL. These data suggest that AEMs and reflectance meters can serve as tools to predict NO3-N leaching losses from cool-season lawn turf, and to provide objective guides for N fertilization.
Resumo:
Desirable nitrogen (N) management practices for turfgrass supply sufficient N for high quality turf while limiting excess soil N. Previous studies suggested the potential of anion exchange membranes (AEMs) for predicting turfgrass color, quality, or yield. However, these studies suggested a wide range of critical soil nitrate-nitrogen (NO3-N) values across sample dates. A field experiment, in randomized complete block design with treatments consisting of nine N application rates, was conducted on a mixed species cool-season turfgrass lawn across two growing seasons. Every 2 wk from May to October, turfgrass color was assessed with three different reflectance meters, and soil NO3-N was measured with in situ AEMs. Cate-Nelson models were developed comparing relative reflectance value and yield to AEM desorbed soil NO3-N pooled across all sample dates. These models predicted critical AEM soil NO3-N values from 0. 45 to 1.4 micro g cm-2 d-1. Turf had a low probability of further positive response to AEM soil NO3-N greater than these critical values. These results suggest that soil NO3-N critical values from AEMs may be applicable across sample dates and years and may serve to guide N fertilization to limit excess soil NO3-N.
Resumo:
Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^
Resumo:
Para la cuantificación de nitratos hay numerosas técnicas y no existe entre los analistas unanimidad en la selección de la más adecuada. Por tal motivo, se compararon cuatro métodos para la determinación de nitratos en muestras vegetales con el fin de evaluar la correlación entre los mismos y establecer pautas para su utilización. Se utilizaron 690 muestras de lechuga (Lactuca sativa L. var. capitata), pertenecientes a los tipos arrepollado y mantecoso, recolectadas a lo largo de un año en el Mercado Cooperativo de Guaymallén (Mendoza, Argentina). Según los tenores de nitratos encontrados en la población estudiada se efectuó un sub-muestreo aleatorio estratificado proporcional para lograr un número de muestras que representaran la variabilidad del total de la población. Se utilizaron cuatro métodos para la determinación de nitratos: 1. destilación por arrastre con vapor, considerado como método de referencia 2. colorimetría por nitración con ácido salicílico 3. colorimetría modificada 4. potenciometría con electrodo selectivo Se probaron diferentes modelos de regresión entre el método de referencia y los otros tres, siendo el lineal el que mejor se ajustó en todos los casos. Los métodos estudiados tuvieron comportamiento semejante. La mayor correlación (r2 = 93 %) se observó entre la destilación por arrastre con vapor y la potenciometría; no obstante, los restantes también presentaron alta correlación. Consecuentemente, la elección del procedimiento analítico dependerá principalmente del número de muestras a analizar, del tiempo requerido por el análisis y del costo del mismo.
Resumo:
La abundancia y bajo costo del recurso hídrico en el Alto Valle de Río Negro combinados con un manejo ineficiente del mismo, principalmente durante la primera parte de la primavera, época en la que los productores riegan con mayor frecuencia para luchar pasivamente contra las probables heladas tardías, permiten inferir que los nitratos presentes en el suelo, así como el aportado por los fertilizantes nitrogenados, están sujetos al lixiviado durante una gran parte del ciclo productivo. En la actualidad no existen estudios regionales que ilustren la variación estacional de la concentración de nitratos en la zona de exploración radical de frutales, por lo que se inició el presente trabajo con el propósito de: a) medir la concentración de los nitratos en el perfil del suelo cultivado con manzanos, desde el período de floración hasta el inicio de caída de hojas, con fertilización nitrogenada en dos dosis y sin fertilización a distintas profundidades de extracción; b) determinar la eficiencia del riego a manto de dicho monte. Se ensayaron dos concentraciones de nitrógeno, adicionado como nitrato de amonio en dos oportunidades: el 50% a la caída de los pétalos y el 50% restante cercano a la cosecha, correspondiendo a dosis de 100 kg ha-1 (N1), 200 kg ha-1 (N2) y un testigo sin agregado de N (N0), durante el período 2004-2005 y 2005-2006. Para determinar los niveles de N en el suelo, expresado como nitratos, se extrajeron muestras del mismo a tres profundidades 0-30; 30-60; 60-90 cm, al inicio de floración, antes del primer riego y después de cada riego. La lámina de agua empleada para el riego a manto osciló entre 1712 y 2400 mm, con un aprovechamiento a campo del 30%. La concentración de nitratos fue baja cuando no se fertilizó, manteniéndose alrededor de 22 mg kg-1 en superficie y reduciéndose a la mitad a la profundidad de 30-60 cm, durante el período de muestreo. En ambas dosis empleadas, el contenido de nitratos del suelo fue mayor llegando a 175 y 300 mg kg-1, respectivamente. Estos valores se igualan a los del testigo a los 30 días en el caso de N1 y a los 60 días para N2. Los resultados permiten inferir que la concentración de nitratos fue efímera en el perfil del suelo y mejoró la eficiencia de riego, principalmente durante la primavera con el fin de minimizar pérdidas de nitrógeno.
Resumo:
Se evaluó la incidencia del agregado de cloruros (Cl-) adicionado como NaCl, y de nitrógeno (N) como KNO3, sobre la producción de materia verde (MV), materia seca (MS) y contenido de nitratos (NO3 -) y Cl- en la parte aérea cosechada de Amaranthus tricolor L. El ensayo se realizó en el invernáculo de la Facultad de Agronomía, UNLPam., Santa Rosa, La Pampa, Argentina, en macetas que contenían 5 kg de suelo. Las dosis de fertilizante agregado en kg ha-1 fueron: 50 y 100 de N y 100, 200 y 300 de Cl-. Se realizaron todas las combinaciones posibles originando 12 tratamientos, incluido el testigo. Para el análisis estadístico se empleó ANOVA doble y los tests de Tukey y Tukey-Kramer. No se encontraron diferencias significativas para MS para ningún agregado. Tampoco se encontraron diferencias significativas en la producción de MV entre las dosis de N (N50 y N100) pero sí entre éstas y el testigo. No hubo diferencias entre las dosis de Cl- aplicadas para esta variable. Los NO3 - mostraron diferencias significativas frente a las distintas dosis de N, como así también entre las medias de los tratamientos con el agregado de Cl- y la no incorporación de éstos. Los valores promedio de NO3 - variaron entre 0,51 y 3,56% base seca (bs) y 445,4 y 2916,1 mg kg-1 fresco. Se encontraron diferencias significativas en el % Cl- (bs) frente a las diferentes dosis de NaCl adicionado. Bajo las condiciones del ensayo, los valores promedio de NO3 - se encuentran dentro de los límites establecidos por la Comunidad Económica Europea.
Resumo:
Se evaluó la incidencia de la fertilización de nitrógeno (N), fósforo (P) y potasio (K) sobre el contenido de prótido crudo (Pr.C.) y acumulación de nitratos (NO3 -) en hojas de Amaranthus tricolor L. El ensayo, realizado en el invernáculo de la Facultad de Agronomía (UNLPam, Santa Rosa, Argentina), se efectuó en macetas utilizando un suelo con baja fertilidad. Las dosis de fertilizantes agregados -en kg/ha- fueron: 50 y 100 para N; 60 y 90, para P y 120, para K. Se practicaron todas las combinaciones posibles, originando 18 tratamientos, incluido el testigo. Para el análisis estadístico se empleó ANOVA triple y los tests de Tukey y Tukey- Kramer. Las variables analizadas fueron % Pr.C., base seca (b.s.) y contenido de NO3 -,expresado en % NO3 - (b.s.) y NO3 - mg/kg fresco. ¬ Para % Pr.C. se encontraron diferencias altamente significativas (p < 0.01) para las distintas dosis de N y diferencias significativas (p < 0.05) para la interacción PxK. ¬ Para NO3 - expresado como % (b.s.) y mg/kg fresco se encontraron diferencias altamente significativas para el factor N, significativas para P y no significativas para K. ¬ Las diferencias fueron altamente significativas para % (b.s.) en las interacciones dobles NxP y PxK y significativas, para NxK , así como diferencias significativas para todas las interacciones dobles en mg/kg fresco. ¬No se encontró significancia en la interacción triple.
Resumo:
En este trabajo se evalúa el impacto de un sistema de aprovechamiento de efluentes domésticos para riego en la calidad del agua subterránea. Los puntos de muestreo seleccionados son parte de un monitoreo a mayor escala del cual sólo se incluyeron aquellos relacionados con el sistema de la planta depuradora Paramillos, ubicada al Norte del aglomerado Mendoza. Esta planta consiste en una laguna de estabilización facultativa. Los resultados, presentados en gráficos, mapas y tablas, se discuten a partir del comportamiento de tres componentes del sistema hídrico: agua superficial (efluente), agua subterránea del nivel superior del acuífero (freática) y agua subterránea del acuífero profundo (confinado/ semiconfinado) y su interacción con el perfil del suelo. Se concluye que el acuífero profundo no es alcanzado por nitratos ni nitritos productos de la degradación biológica de la materia orgánica del efluente, lo que se atribuye a la capa impermeable subyacente. En el nivel superior o freático, el perfil del suelo remueve parte del N total y P total ingresado, entre el 39 y 90%. La remoción de DBO varía entre 30 y 90% y la remoción de E. coli remanente en efluente es total.
Resumo:
En la zona norte de la provincia de Mendoza se desarrollan actividades que pueden afectar la calidad natural del agua subterránea: disposición y re-uso de efluentes industriales para riego agrícola, utilización de fertilizantes, saneamiento in-situ, fugas de redes de alcantarillado, etc. En esta región, surcada superficialmente por los ríos Mendoza y Tunuyán, la sedimentación cuaternaria determinó la formación de dos grandes unidades hidrogeológicas: acuíferos libres (sector de conos aluviales), y acuífero freático superior y acuíferos subyacentes confinados y/o semiconfinados. El área de estudio se encuentra ubicada en esta última unidad hidrogeológica donde se ha detectado contaminación de acuíferos por nitratos. El objetivo de este trabajo es identificar el origen de la contaminación, utilizando metodología hidroquímica mediante la evaluación de diversos parámetros físicoquímicos y biológicos, y técnicas isotópicas para corroborar la procedencia del agua subterránea y el origen de los nitratos. Los resultados obtenidos muestran que la presencia de nitratos en los acuíferos semiconfinado y confinado no proviene de la influencia del acuífero libre suprayacente, afectado por el re-uso de efluentes, sino que se relaciona con el ingreso de flujo horizontal de aguas subterráneas contaminadas provenientes del área del Gran Mendoza, debido a las pérdidas en las redes de alcantarillado y obras de saneamiento in situ.
Resumo:
En este trabajo se desarrolló un modelo probabilístico que utiliza la teoría de la función de densidad de probabilidades derivada para estimar la carga media anual de nitratos transportada por el escurrimiento superficial, utilizando una relación funcional entre el escurrimiento y la carga de nitratos. El modelo determinístico hidrológico y de calidad de agua denominado Simulator for Water Resources in Rural Basins - Water Quality (SWRRB-WQ) fue utilizado para estimar la carga de nitratos en el escurrimiento superficial. Este modelo emplea como variable de entrada la precipitación diaria observada en la Estación del Aeropuerto de Olavarría durante el período 1988 a 2002. Para la calibración del modelo se aplicó una nueva metodología que estima la incertidumbre en los valores observados. Ambos modelos probabilístico y determinístico se aplican en una subcuenca rural del arroyo Tapalqué (provincia de Buenos Aires, Argentina) y finalmente se comparan los valores de la carga de nitratos estimados con los dos modelos con las observaciones realizadas en la sección del arroyo motivo de este estudio. Los resultados muestran que la carga media de nitratos obtenida con el modelo probabilístico es del mismo orden de magnitud que los valores medios observados y estimados con el modelo hidrológico y de calidad de agua SWRRB-WQ.
Resumo:
In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.
Resumo:
Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.
Resumo:
Study sites. Samples of surface water were taken from 4 coastal lagoons on the Yucatan Peninsula in Mexico: Celestun (20° 45' N - 90° 22' W), Chelem (21° 15' N - 89° 45' W), Rosada Lagoon (21º 19' N - 89º 19' W), and Sabancuy Estuary (18° 58' N - 91° 12' W). The sampling was performed from august to October of 2011 (Chelem 08/24; Laguna Rosada 09/06; Celestún 09/28; Sabancuy 10/25). The sampling was random without replacement and 10 samples of surface water were collected along a transect parallel to the coastal axis. Samples were deposited in sterile plastic bottles and conserved in refrigeration at 4°C. All samples were processed within 24 hours after sampling. According to the Mexican laws and regulations no permissions are required to obtain water and sediment samples from open public areas. Analysis of environmental and physicochemical parameters. Determinations of the environmental parameters were performed with a Hach 5465000 model 156 multi-parameter measuring instrument. The Lorenzen method was used to determine chlorophyll-a (21) with 90% acetone and the concentration was calculated according to the formula: Chla= 27.63 (OD665o - OD665a)(VA)/VM x L Where, OD665o: absorbance at 665 nm before acidification; OD665a: absorbance at 665 nm after acidification; VA: volume (ml) of acetone for extraction; VM: volume (ml) of filtered water; L: length (cm) of the photometric cell. Determinations of the physicochemical parameters (silicates, phosphates, nitrates, nitrites and ammonia) were performed using the spectrophotometric techniques described and modified by Strickland and Parsons (1972).
Resumo:
Spain is the fifth-largest producer of melon (Cucumis melo L.) and the second exporter in the world. To a national level, Castilla-La Mancha emphasize and, specifically, Ciudad Real, where is cultivated 27% of national area dedicated to this crop and 30% of melon national production. Melon crop is cultivating majority in Ciudad Real and it is mainly located in the Alto Guadiana, where the major aquifers of the region are located, the aquifer 23 or Mancha Occidental and the aquifer 24 or Campo de Montiel, both declared overexploited and vulnerable zones to nitrate pollution from agricultural sources. The problem is exacerbated because in this area, groundwater is the basic resource of supply to populations, and even often the only one. Given the importance of melon in the area, recent research has focused on the irrigation of melon crop. Unfortunately, scant information has been forthcoming on the effect of N fertilizer on melon piel de sapo crop, so it is very important to tackle in a serious study that lead to know the N requirements on the melon crop melon by reducing the risks of contamination by nitrate leaching without affecting productivity and crop quality. In fact, the recommended dose is often subjective and practice is a N overdose. In this situation, the taking of urgent measures to optimize the use of N fertilization is required. To do it, the effect of N in a melon crop, fertirrigated and on plastic mulch, was studied. The treatments consisted in different rates of N supply, considering N fertilizer and N content in irrigation water, so the treatment applied were: 30 (N30), 85 (N85), 112 (N112) and 139 (N139) Kg N ha-1 in 2005; 93 (N93), 243 (N243) and 393 (N393) kg ha-1 in 2006; and 11 (N11), 61 (N61), 95 (N95) and 148 (N148) kg ha-1 in 2007. A randomized complete-block design was used and each treatment was replicated four times. The results showed a significant effect of N on dry biomass and two patterns of growth were observed. On the one hand, a gradual increase in vegetative biomass of the plant, leaves and stem, with increasing N, and on the other hand, an increase of fruit biomass also with increasing N up to a maximum of biomass corresponding to the optimal dose determined in 90 kg ha-1 of N applied, corresponding to 160 kg ha-1 of N available for melon crop, since this optimum dose, the fruit biomass suffers a decline. A significant effect was observed in concentration and N uptake in leaf, steam, fruit and whole plant, increasing in all of them with increasing of N doses. Fast N uptake occurred from 30-35 to 70-80 days after transplanting, coinciding with the fruit development. The N had a clear influence on the melon yield, its components, skin thickness and flesh ratio. The melon yield increased, as the mean fruit weight and number of fruits per m2 with increasing N until achieve an above 95% of the maximum yield when the N applied is 90 kg ha-1 or 160 kg ha-1 of N available. When N exceeds the optimal amount, there is a decline in yield, reducing the mean fruit weight and number of fruits per square meter, and was also observed a decrease in fruit quality by increasing the skin thickness and decrease the flesh ratio, which means an increase in fruit hollowed with excessive N doses. There was a trend for all indexes of N use efficiency (NUE) to decline with increasing N rate. We observed two different behaviours in the calculation result of the NUE; on the one hand, all the efficiency indexes calculated with N applied and N available had an exponential trend, and on the other hand, all the efficiency indexes calculated with N uptake has a linear trend. The linear regression cuts the exponential curve, delimiting a range within which lies the optimum quantity of N. The N leaching as nitrates increased exponentially with the amount of N. The increase of N doses was affected on the N mineralization. There was a negative exponential effect of N available on the mineralization of this element that occurs in the soil during the growing season, calculated from the balances of this element. The study of N leaching for each N rate used, allowed to us to establish several environmental indices related to environmental risk that causes the use of such doses, a simple way for them to be included in the code of Best Management Practices.