965 resultados para Fracture analysis
Resumo:
Dual energy X-ray absorptiometry (DXA) is widely accepted as the reference method for diagnosis and monitoring of osteoporosis and for assessment of fracture risk, especially at hip. However, axial-DXA is not suitable for mass screening, because it is usually confined to specialized centers. We propose a two-step diagnostic approach to postmenopausal osteoporosis: the first step, using an inexpensive, widely available screening technique, aims at risk stratification in postmenopausal women; the second step, DXA of spine and hip is applied only to potentially osteoporotic women preselected on the basis of the screening measurement. In a group of 110 healthy postmenopausal woman, the capability of various peripheral bone measurement techniques to predict osteoporosis at spine and/or hip (T-score < -2.5SD using DXA) was tested using receiver operating characteristic (ROC) curves: radiographic absorptiometry of phalanges (RA), ultrasonometry at calcaneus (QUS. CALC), tibia (SOS.TIB), and phalanges (SOS.PHAL). Thirty-three women had osteoporosis at spine and/or hip with DXA. Areas under the ROC curves were 0.84 for RA, 0.83 for QUS.CALC, 0.77 for SOS.PHAL (p < 0.04 vs RA) and 0.74 for SOS.TIB (p < 0.02 vs RA and p = 0.05 vs QUS.CALC). For levels of sensitivity of 90%, the respective specificities were 67% (RA), 64% (QUS.CALC), 48% (SOS.PHAL), and 39% (SOS.TIB). In a cost-effective two-step, the price of the first step should not exceed 54% (RA), 51% (QUS.CALC), 42% (SOS.PHAL), and 25% (SOS.TIB). In conclusion, RA, QUS.CALC, SOS.PHAL, and SOS.TIB may be useful to preselect postmenopausal women in whom axial DXA is indicated to confirm/exclude osteoporosis at spine or hip.
Resumo:
Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.
Resumo:
INTRODUCTION Stable reconstruction of proximal femoral (PF) fractures is especially challenging due to the peculiarity of the injury patterns and the high load-bearing requirement. Since its introduction in 2007, the PF-locking compression plate (LCP) 4.5/5.0 has improved osteosynthesis for intertrochanteric and subtrochanteric fractures of the femur. This study reports our early results with this implant. METHODS Between January 2008 and June 2010, 19 of 52 patients (12 males, 7 females; mean age 59 years, range 19-96 years) presenting with fractures of the trochanteric region were treated at the authors' level 1 trauma centre with open reduction and internal fixation using PF-LCP. Postoperatively, partial weight bearing was allowed for all 19 patients. Follow-up included a thorough clinical and radiological evaluation at 1.5, 3, 6, 12, 24, 36 and 48 months. Failure analysis was based on conventional radiological and clinical assessment regarding the type of fracture, postoperative repositioning, secondary fracture dislocation in relation to the fracture constellation and postoperative clinical function (Merle d'Aubigné score). RESULTS In 18 patients surgery achieved adequate reduction and stable fixation without intra-operative complications. In one patient an ad latus displacement was observed on postoperative X-rays. At the third month follow-up four patients presented with secondary varus collapse and at the sixth month follow-up two patients had 'cut-outs' of the proximal fragment, with one patient having implant failure due to a broken proximal screw. Revision surgeries were performed in eight patients, one patient receiving a change of one screw, three patients undergoing reosteosynthesis with implantation of a condylar plate and one patient undergoing hardware removal with secondary implantation of a total hip prosthesis. Eight patients suffered from persistent trochanteric pain and three patients underwent hardware removal. CONCLUSIONS Early results for PF-LCP osteosynthesis show major complications in 7 of 19 patients requiring reosteosynthesis or prosthesis implantation due to secondary loss of reduction or hardware removal. Further studies are required to evaluate the limitations of this device.
Resumo:
The use of smaller surgical incisions has become popularized for total hip arthroplasty (THR) because of the potential benefits of shorter recovery and improved cosmetic appearance. However, an increased incidence of serious complications has been reported. To minimize the risks of minimally invasive approaches to THR, we have developed an experimental approach which enables us to evaluate risk factors in these procedures through cadaveric simulations performed within the laboratory. During cadaveric hip replacement procedures performed via posterior and antero-lateral mini-incisions, pressures developed between the wound edges and the retractors were approximately double those recorded during conventional hip replacement using Charnley retractors (p < 0.01). In MIS procedures performed via the dual-incision approach, lack of direct visualisation of the proximal femur led to misalignment of broaches and implants with increased risk of cortical fracture during canal preparation and implant insertion. Cadaveric simulation of surgical procedures allows surgeons to measure variables affecting the technical success of surgery and to master new procedures without placing patients at risk.
Resumo:
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.
Resumo:
Orbital blunt trauma is common, and the diagnosis of a fracture should be made by computed tomographic (CT) scan. However, this will expose patients to ionising radiation. Our objective was to identify clinical predictors of orbital fracture, in particular the presence of a black eye, to minimise unnecessary exposure to radiation. A 10-year retrospective study was made of the medical records of all patients with minor head trauma who presented with one or two black eyes to our emergency department between May 2000 and April 2010. Each of the patients had a CT scan, was over 16 years old, and had a Glasgow Coma Score (GCS) of 13-15. The primary outcome was whether the black eye was a valuable predictor of a fracture. Accompanying clinical signs were considered as a secondary outcome. A total of 1676 patients (mean (SD) age 51 (22) years) and minor head trauma with either one or two black eyes were included. In 1144 the CT scan showed a fracture of the maxillofacial skeleton, which gave an incidence of 68.3% in whom a black eye was the obvious symptom. Specificity for facial fractures was particularly high for other clinical signs, such as diminished skin sensation (specificity 96.4%), diplopia or occulomotility disorders (89.3%), fracture steps (99.8%), epistaxis (95.5%), subconjunctival haemorrhage (90.4%), and emphysema (99.6%). Sensitivity for the same signs ranged from 10.8% to 22.2%. The most striking fact was that 68.3% of all patients with a black eye had an underlying fracture. We therefore conclude that a CT scan should be recommended for every patient with minor head injury who presents with a black eye.
Resumo:
We address under what conditions a magma generated by partial melting at 100 km depth in the mantle wedge above a subduction zone can reach the crust in dikes before stalling. We also address under what conditions primitive basaltic magma (Mg # >60) can be delivered from this depth to the crust. We employ linear elastic fracture mechanics with magma solidification theory and perform a parametric sensitivity analysis. All dikes are initiated at a depth of 100 km in the thermal core of the wedge, and the Moho is fixed at 35 km depth. We consider a range of melt solidus temperatures (800-1100 degrees C), viscosities (10-100 Pa s), and densities (2400-2700 kg m(-3)). We also consider a range of host rock fracture toughness values (50-300 MPa m(1/2)) and dike lengths (2-5 km) and two thermal structures for the mantle wedge (1260 and 1400 degrees C at 100 km depth and 760 and 900 degrees C at 35 km depth). For the given parameter space, many dikes can reach the Moho in less than a few hundred hours, well within the time constraints provided by U series isotope disequilibria studies. Increasing the temperature in the mantle wedge, or increasing the dike length, allows additional dikes to propagate to the Moho. We conclude that some dikes with vertical lengths near their critical lengths and relatively high solidus temperatures will stall in the mantle before reaching the Moho, and these may be returned by corner flow to depths where they can melt under hydrous conditions. Thus, a chemical signature in arc lavas suggesting partial melting of slab basalts may be partly influenced by these recycled dikes. Alternatively, dikes with lengths well above their critical lengths can easily deliver primitive magmas to the crust, particularly if the mantle wedge is relatively hot. Dike transport remains a viable primary mechanism of magma ascent in convergent tectonic settings, but the potential for less rapid mechanisms making an important contribution increases as the mantle temperature at the Moho approaches the solidus temperature of the magma.
Resumo:
Dike swarms consisting of tens to thousands of subparallel dikes are commonly observed at Earth's surface, raising the possibility of simultaneous propagation of two or more dikes at various stages of a swarm's development. The behavior of multiple propagating dikes differs from that of a single dike owing to the interacting stress fields associated with each dike. We analyze an array of parallel, periodically spaced dikes that grow simultaneously from an overpressured source into a semi-infinite, linear elastic host rock. To simplify the analysis, we assume steady state (constant velocity) magma flow and dike propagation. We use a perturbation method to analyze the coupled, nonlinear problem of multiple dike propagation and magma transport. The stress intensity factor at the dike tips and the opening displacements of the dike surfaces are calculated. The numerical results show that dike spacing has a profound effect on the behavior of dike propagation. The stress intensity factors at the tips of parallel dikes decrease with a decrease in dike spacing and are significantly smaller than that for a single dike with the same length. The reduced stress intensity factor indicates that, compared to a single dike, propagation of parallel dikes is more likely to be arrested under otherwise the same conditions. It also implies that fracture toughness of the host rock in a high confining pressure environment may not be as high as inferred from the propagation of a single dike. Our numerical results suggest fracture toughness values on the order of 100 MPa root m. The opening displacements for parallel dikes are smaller than that for a single dike, which results in higher magma pressure gradients in parallel dikes and lower flux of magma transport.
Resumo:
BACKGROUND Data on the association between subclinical thyroid dysfunction and fractures conflict. PURPOSE To assess the risk for hip and nonspine fractures associated with subclinical thyroid dysfunction among prospective cohorts. DATA SOURCES Search of MEDLINE and EMBASE (1946 to 16 March 2014) and reference lists of retrieved articles without language restriction. STUDY SELECTION Two physicians screened and identified prospective cohorts that measured thyroid function and followed participants to assess fracture outcomes. DATA EXTRACTION One reviewer extracted data using a standardized protocol, and another verified data. Both reviewers independently assessed methodological quality of the studies. DATA SYNTHESIS The 7 population-based cohorts of heterogeneous quality included 50,245 participants with 1966 hip and 3281 nonspine fractures. In random-effects models that included the 5 higher-quality studies, the pooled adjusted hazard ratios (HRs) of participants with subclinical hyperthyroidism versus euthyrodism were 1.38 (95% CI, 0.92 to 2.07) for hip fractures and 1.20 (CI, 0.83 to 1.72) for nonspine fractures without statistical heterogeneity (P = 0.82 and 0.52, respectively; I2= 0%). Pooled estimates for the 7 cohorts were 1.26 (CI, 0.96 to 1.65) for hip fractures and 1.16 (CI, 0.95 to 1.42) for nonspine fractures. When thyroxine recipients were excluded, the HRs for participants with subclinical hyperthyroidism were 2.16 (CI, 0.87 to 5.37) for hip fractures and 1.43 (CI, 0.73 to 2.78) for nonspine fractures. For participants with subclinical hypothyroidism, HRs from higher-quality studies were 1.12 (CI, 0.83 to 1.51) for hip fractures and 1.04 (CI, 0.76 to 1.42) for nonspine fractures (P for heterogeneity = 0.69 and 0.88, respectively; I2 = 0%). LIMITATIONS Selective reporting cannot be excluded. Adjustment for potential common confounders varied and was not adequately done across all studies. CONCLUSION Subclinical hyperthyroidism might be associated with an increased risk for hip and nonspine fractures, but additional large, high-quality studies are needed. PRIMARY FUNDING SOURCE Swiss National Science Foundation.
Resumo:
PURPOSE The SWISSspine registry (SSR) was launched in 2005 to assess the safety and effectiveness of balloon kyphoplasty (BKP). In the meantime, repeated reports on high rates of adjacent vertebral fractures (ASF) after BKP of vertebral insufficiency fractures were published. The causes for ASF and their risk factors are still under debate. The purpose of this study was to report the incidence and potential risk factors of ASF within the SSR dataset. METHODS The SSR data points are collected perioperatively and during follow-ups, with surgeon- and patient-based information. All patients documented with a monosegmental osteoporotic vertebral insufficiency fracture between March 2005 and May 2012 were included in the study. The incidence of ASF, significant associations with co-variates (patient age, gender, fracture location, cement volume, preoperative segmental kyphosis, extent of kyphosis correction, and individual co-morbidities) and influence on quality of life (EQ-5D) and back pain (VAS) were analyzed. RESULTS A total of 375 patients with a mean follow-up of 3.6 months was included. ASF were found in 9.9 % (n = 37) and occurred on average 2.8 months postoperatively. Preoperative segmental kyphosis >30° (p = 0.026), and rheumatoid arthritis (p = 0.038) and cardiovascular disease (p = 0.047) were significantly associated with ASF. Furthermore, patients with ASF had significantly higher back pain at the final follow-up (p = 0.001). No further significant associations between the studied co-variates and ASF were seen in the adjusted analysis. CONCLUSIONS The findings suggest that patients with a preoperative segmental kyphosis >30° or patients with co-morbidities like rheumatoid arthritis and a cardiovascular disease are at high risk of ASF within 6 months after the index surgery. In case of an ASF event, back pain levels are significantly increased. LEVEL OF EVIDENCE IV.
Resumo:
Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.
Resumo:
Limited data exist on the efficacy of long-term therapies for osteoporosis. In osteoporotic postmenopausal women receiving denosumab for 7 years, nonvertebral fracture rates significantly decreased in years 4-7 versus years 1-3. This is the first demonstration of a further benefit on fracture outcomes with long-term therapy for osteoporosis. INTRODUCTION This study aimed to evaluate whether denosumab treatment continued beyond 3 years is associated with a further reduction in nonvertebral fracture rates. METHODS Participants who completed the 3-year placebo-controlled Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were invited to participate in an open-label extension. The present analysis includes 4,074 postmenopausal women with osteoporosis (n = 2,343 long-term; n = 1,731 cross-over) who enrolled in the extension, missed ≤1 dose during their first 3 years of denosumab treatment, and continued into the fourth year of treatment. Comparison of nonvertebral fracture rates during years 1-3 of denosumab with that of the fourth year and with the rate during years 4-7 was evaluated. RESULTS For the combined group, the nonvertebral fracture rate per 100 participant-years was 2.15 for the first 3 years of denosumab treatment (referent) and 1.36 in the fourth year (rate ratio [RR] = 0.64; 95 % confidence interval (CI) = 0.48 to 0.85, p = 0.003). Comparable findings were observed in the groups separately and when nonvertebral fracture rates during years 1-3 were compared to years 4-7 in the long-term group (RR = 0.79; 95 % CI = 0.62 to 1.00, p = 0.046). Fracture rate reductions in year 4 were most prominent in subjects with persisting low hip bone mineral density (BMD). CONCLUSIONS Denosumab treatment beyond 3 years was associated with a further reduction in nonvertebral fracture rate that persisted through 7 years of continuous denosumab administration. The degree to which denosumab further reduces nonvertebral fracture risk appears influenced by the hip bone density achieved with initial therapy.