923 resultados para Fractal descriptors
Resumo:
A Fractal Quantizer is proposed that replaces the expensive division operation for the computation of scalar quantization by more modest and available multiplication, addition and shift operations. Although the proposed method is iterative in nature, simulations prove a virtually undetectable distortion to the naked eve for JPEG compressed images using a single iteration. The method requires a change to the usual tables used in JPEG algorithins but of similar size. For practical purposes, performing quantization is reduced to a multiplication plus addition operation easily programmed in either low-end embedded processors and suitable for efficient and very high speed implementation in ASIC or FPGA hardware. FPGA hardware implementation shows up to x15 area-time savingscompared to standars solutions for devices with dedicated multipliers. The method can be also immediately extended to perform adaptive quantization(1).
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.
Resumo:
This paper argues for the use of ‘fractals’ in theorising sociospatial relations. From a realist position, a nonmathematical but nonmetaphoric and descriptive view of ‘fractals’ is advanced. Insights from the natural sciences are combined with insights on the position of the observer from Luhmann and notions of assemblages and repetitions from Deleuze. It is argued that the notion of ‘fractals’ can augment current understanding of sociospatialities in three ways. First, it can pose questions about the scalar position of the observer or the grain of observation; second, as a signifier of particular attributes, it prompts observation and description of particular structuring processes; and third, the epistemic access afforded by the concept can open up possibilities for transformative interventions and thereby inform the same. The theoretical usefulness of the concept is demonstrated by discussing the territory, place, scale, and networks (TPSN) model for theorising sociospatial relations advanced by B Jessop, N Brenner, and M Jones in their 2008 paper “Theorizing sociospatial relations”, published in this journal (volume 26, pages 389–401). It is suggested that a heuristic arising from a ‘fractal’ ontology can contribute to a polymorphous, as opposed to polyvalent, understanding of sociospatial relations.
Resumo:
This paper discusses concepts of space within the planning literature, the issues they give rise to and the gaps they reveal. It then introduces the notion of 'fractals' borrowed from complexity theory and illustrates how it unconsciously appears in planning practice. It then moves on to abstract the core dynamics through which fractals can be consciously applied and illustrates their working through a reinterpretation of the People's Planning Campaign of Kerala, India. Finally it highlights the key contribution of the fractal concept and the advantages that this conceptualisation brings to planning.
Resumo:
Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon that is absent in Euclidean space [M. T. Barlow et al., Phys. Rev. Lett. 75, 3042]. In this paper the isotropy restoration feature is considered for a family of two-dimensional Sierpinski gasket type fractal resistor networks. A parameter xi is introduced to describe this phenomenon. Our numerical results show that xi satisfies the scaling law xi similar to l(-alpha), where l is the system size and alpha is an exponent independent of the degree of microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the underlying fractal structure towards the Euclidean triangular lattice through increasing the side length b of the gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
Resumo:
Recent advances in the field of chaotic advection provide the impetus to revisit the dynamics of particles transported by blood flow in the presence of vessel wall irregularities. The irregularity, being either a narrowing or expansion of the vessel, mimicking stenoses or aneurysms, generates abnormal flow patterns that lead to a peculiar filamentary distribution of advected particles, which, in the blood, would include platelets. Using a simple model, we show how the filamentary distribution depends on the size of the vessel wall irregularity, and how it varies under resting or exercise conditions. The particles transported by blood flow that spend a long time around a disturbance either stick to the vessel wall or reside on fractal filaments. We show that the faster flow associated with exercise creates widespread filaments where particles can get trapped for a longer time, thus allowing for the possible activation of such particles. We argue, based on previous results in the field of active processes in flows, that the non-trivial long-time distribution of transported particles has the potential to have major effects on biochemical processes occurring in blood flow, including the activation and deposition of platelets. One aspect of the generality of our approach is that it also applies to other relevant biological processes, an example being the coexistence of plankton species investigated previously.
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a novel method of plant classification using Gabor wavelet filters to extract texture filters in a foliar surface. The aim of this promising method is to add to the results obtained by other leaf attributes (such as shape, contour, color, among others), increasing, therefore, the percentage of classification of plant species. To corroborate the efficiency of the technique, an experiment using 20 species from Brazilian flora was done and discussed. The results are also compared with texture Fourier descriptors and cooccurrence matrices. (C) 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 236-243, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20201