292 resultados para Fouling.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a growing interest in the industrial application of ultrasound, especially in the food industry. Power ultrasound can have a number of physical effects; it can increase turbulence through both the introduction of vibrational energy and through acoustic streaming, it can cause both particle agglomeration and particle dispersion and clean surfaces with a scouring action. Our work in this area has focused on the use of ultrasound to enhance membrane processing. Low frequency ultrasound has been used to facilitate cross flow ultrafiltration of dairy whey solutions for both during the ultrafiltration production cycle and the cleaning cycle. During the production cycle, the use of ultrasound reduces both pore blockage and the specific resistance of the fouling cake layer. This leads to higher flux rates and the potential for longer production cycles. During the cleaning cycle, ultrasound systematically increases cleaning efficiency, thus has the potential to reduce both total chemical consumption and system downtime. There was no deterioration in cleaning effectiveness or membrane condition which imples that sonication , has not damaged the membrane itself. Similarly, there was no change in the chemical nature of soluble proteins following sonication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanoporous structure of a membrane varies in a 3-dimensional (3-D) space and has remarkable influences on the filtration or desalination achieved, fouling potentials and therefore, the quality of yielded water. Knowledge of the 3-D nanoporous structure is thus vital to understanding and predicting its performance. A novel method by incorporating transmission electronic microtomography, image processing and 3-D reconstruction is introduced to characterize membranes with nano structures. The reconstruction algorithm allows for the visualization of 3-D nanoporous structure in a non-destructive way from any directions. This novel technique leads to in-depth understanding and accurate prediction of filtration performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work previously presented has shown that ultrasound can be effective in enhancing both the production and cleaning cycles of dairy membrane  processes. In this present work we extend these previous results to consider the effect of ultrasonic frequency and the use of intermittent ultrasound. These results show that the use of continuous low frequency (50 kHz) ultrasound is most effective in both the fouling and cleaning cycles. The application of intermittent high frequency (1 MHz) ultrasound is less effective. At higher transmembrane pressure, high frequency pulsed sonication can indeed lead to a reduction in steady state membrane flux. The benefits of ultrasound arise from a reduction in both concentration polarization and in the resistance provided by the more labile protein deposits that are removed during a water wash. Conversely, the loss of membrane flux when high frequency pulsed sonication is used arises from a significant increase in the more tenacious ‘irreversible’ fouling deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low frequency ultrasound has been used to facilitate cross-flow ultrafiltration of dairy whey solutions. Experimental results show that ultrasonic irradiation at low power levels can significantly enhance the permeate flux with an enhancement factor of between 1.2 and 1.7. The use of turbulence promoters (spacers) in combination with ultrasound can lead to a doubling in the permeate flux. The application of a combined pore blockage/cake resistance model to the observed experimental data suggests that the use of ultrasound acts to lower the compressibility of both the initial protein deposit and the growing cake. Conversely, the pore blockage parameter is not significantly affected. The use of a gel polarization model shows that the ultrasonic irradiation increases the mass transfer coefficient within the concentration polarization layer. Electron microscopy results showed no evidence that the ultrasonic irradiation altered the membrane integrity. HPLC analysis of the whey proteins in the feed solution before and after sonication showed that the concentration profile of the whey proteins was also not affected by the sonication process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrafiltration of whey solutions is a common feature of dairy processes. However, the frequent fouling of ultrafiltration membranes and the subsequent cleaning cycle significantly affect the economics of such a process. In this work, we investigated the effect of ultrasonics on the cleaning of whey-fouled membranes and examined the variables that influence this effect. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath.

Results show that the use of ultrasonics enhances the flux recovery following fouling. The extent of flux recovery is independent of the length of sonication time and increases with ultrasonic power. The use of surfactants in combination with ultrasonic irradiation shows a synergistic effect, providing a better efficiency than either cleaning process alone. Repetitive use of ultrasonic cleaning over a 1 month period does not result in any significant change in the permeate flux of a cleaned membrane, indicating that the ultrasonic treatment does not appear to damage the membrane structure itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work reported in this thesis was to design and implement an ecological effects environmental monitoring program which would: 1) Collect baseline biological information on sessile epibiotic fouling communities from an area adjacent to a petroleum refinery located on Corio Bay, Victoria, to allow comparison with results of future monitoring for the assessment of long term temporal water quality trends. 2) Detect and — if possible - estimate the magnitude of any influence on epibiotic fouling communities within the Corio Bay marine ecosystem attributable to operations at the Shell Petroleum Refinery. 3) Investigate the extent of thermal stratification and rate of dispersal of the petroleum refinery main cooling-water outfall plume (discharging up to 350,000 tonnes of warmed seawater per day), and its effect on epibiotic communities within the EPA-defined mixing zone. A major component of the work undertaken was the design and development of artificial-substrate biological sampling stations suitable for use under the conditions prevailing in Corio Bay, and the development of appropriate quantitative underwater photographic sampling techniques to fulfil the experimental criteria outlined above. Experimental and other constraints imposed on the design of the stations precluded the simple suspension of frames from jetties or pylons, a technique widely used in previous work of this type. Artificial substrate panels were deployed along three radial transects centred within and extending beyond the petroleum refinery main cooling-water mixing zone. Identical substrate panels were deployed at a number of control sites located throughout Corio Bay, each chosen for differences in their degree of exposure to such factors as water movement, depth, shipping traffic and/or comparable industrial activity. The rate of colonisation (space utilisation) and the development of epibiotic fouling communities on artificial substrate panels was monitored over two twelve-month sampling periods using quantitative underwater photographic sampling techniques. Sampling was conducted at 4-8 week intervals with the rate of panel colonisation and community structure determined via coverage measurements. Various species of marine algae, polychaete tubeworms, hydroids, barnacles, simple and colonial ascidians, sponges, bivalve molluscs and encrusting bryozoans were all detected growing on panels. Communities which established on panels within the cooling-water mixing-zone and those at control sites were compared using statistical procedures including agglomerative hierarchical cluster analysis. A photographic sample archive has been established to allow comparison with similar future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The textile industry plays an important role in the world economy as well as our daily life. However, the industry consuming a large quantity of water and generating huge amount of wastewater are unsustainable to the conservation of our precious resources and environment and need improvement. The wastewater, especially the one from spent cotton reactive dyebaths, contains high salt content, various dyes and high alkalinity. This study was carried out to investigate the feasibility of membrane filtration treating spent cotton reactive dye baths. A stirred cell with nanofiltration membrane was used aiming at reusing the reclaimed water. Spent dyebath solutions were synthesized containing hydrolyzed C. I. Reactive Black 5 and sodium chloride. When a piece of membrane was used repeatedly it was expected the flux would decrease after each usage due to fouling of impurities. However, it was found that the water flux increased while dye rejection decreased after each run. At pH 10, the dye rejection decreased significantly. It was proposed that the pore sizes of membrane might have changed during membrane filtration. An equation was derived calculating the possible changes of pore sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to the Conventional Activated Sludge Process (ASP), Membrane Bioreactors (MBRs) have proven their superior performance in wastewater treatment and reuse during the past two decades. Further, MBRs have wide array of applications such as the removal of nutrients, toxic and persistent organic pollutants (POPs), which are impossible or difficult to remove using ASP. However, fouling of membrane is one of the main drawbacks to the widespread application of MBR technology and Extra-cellular Polymeric Substances (EPS) secreted by microbes are considered as one of the major foulants, which will reduce the flux (L/m2/h) through the membrane. Critical flux is defined as the flux above which membrane cake or gel layer formation due to deposition of EPS and other colloids on the membrane surface occurs. Thus, one of the operating strategies to control the fouling of MBRs is to operate those systems below the critical flux (at Sub-Critical flux). This paper discusses the critical flux results, which were obtained from short-term common flux step method, for a lab-scale MBR system treating Ametryn. This study compares the critical flux values that were obtained by operating the MBR system (consisting of a submerged Hollow-Fibre membrane with pore size of 0.4μm and effective area of 0.2m2) at different operating conditions and mixed liquor properties. This study revealed that the critical flux values found after the introduction of Ametryn were significantly lower than those of obtained before adding Ametryn to the synthetic wastewater. It was also revealed that the production of carbohydrates (in SMP) is greater than proteins, subsequent to the introduction of Ametryn and this may have influenced the membrane to foul more. It was also observed that a significant removal (40-60%) of Ametryn from this MBR during the critical flux determination experiments with 40 minutes flux-step duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to investigate the performance of aerobic thermophilic membrane bioreactor (MBR) treating raw landfill leachate from two landfill sites in Thailand (Pathumthani site and Ram Indra site). The leachates from these sites were mixed in different proportions to produce a BOD/COD ratio of 0.39, 0.57, and 0.65, which was investigated in 3 experimental runs. The COD, ammonia, and TKN composition of the mixed leachate was 12,000, 1700 and 1900 mg/L, respectively. BOD was supplemented with glucose and soy protein. The system was operated at 45 degrees C and at a hydraulic retention time (HRT) of 24 hrs. The membrane used was a ceramic membrane with an ‘‘outside-in’’ flow mode and consisted of 22 open fibres with an inner diameter of approximately 2 mm. The COD removal rate increased from an average value of 62–79% while ammonia removal efficiency decreased from 75 to 60% with gradual increase in BOD. Furthermore, a high BOD removal efficiency (97–99%) was also observed. This clearly indicates that thermophilic system is highly suitable for COD and BOD removal especially at elevated organic loading. However, the system does not favor high nitrogen content wastewaters as the ammonia removal efficiency dropped with increasing BOD/COD ratio. Similar trends were found in TKN analysis as well. However, this system could serve as a pretreatment in removing ammonia. The concentrations of soluble and bound extra-cellular polymeric substances (EPS) found in thermophilic MBR were higher when compared to the corresponding concentrations in a mesophilic MBR, which led to a higher rate of fouling in the thermophilic membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reverse osmosis (RO) is currently one of the most prevalent methods used for seawater desalination. During the past four decades, the research anddevelopment has reduced the energy consumption from about 20 to 4 kWh/m3, while improvements in membrane science has led to a 20-fold increase in the specific membrane flux. Nevertheless, research is still underway to reduce the operation and maintenance problems and thus improve the performance of RO systems. The most important maintenance problem associated with RO operation is the membrane fouling, especially biological fouling (biofouling). This work focuses on the aspects to eliminate biofouling in RO membranes, by adopting a proper pretreatment system. The experimental results revealed that fluidized bed biological granular activated carbon, at 15 min empty bed contact time (with dissolved organic carbon, DOC concentration of 6–8 mg/L) can be utilized effectively to remove nearly 100% biodegradable DOC from seawater. Continuous experiments of membrane bioreactor (MBR) have been conducted concomitantly to gain insight into the long-term effects of MBR on biodegradable organic content removal and biofouling control. The results show that MBR system produced better effluent with 78% DOC removal and quasi-total biodegradable DOC removal. Dissolved oxygen was not a limiting factor for the DOC degradation. Short-term experimental runs were conducted with RO membrane using both pretreated and non-pretreated seawater. The results showed that filtrate from MBR yielded the highest permeate flux improvement, which was approximately 300% compared with non-pretreated seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many Asian countries, rapid industrialization and urbanization has led to an increased number of cars, making wastewater from gas stations an important issue of concern in urban environment. This wastewater is characterized by high concentration of oil-water emulsion, which cannot be effectively removed by a conventional gravity separator. An experimental investigation on the treatability of oily wastewater from gas stations using a membrane bioreactor (MBR) system revealed that MBR system could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 h and an oil-loading rate of 1.8 kg oil m^sup -3^.d^sup -1^. It was anticipated that adding powdered activated carbon (PAC) in the MBR could help to adsorb the oils. However, operating the MBR with only microbial flocs has an advantage over adding PAC particles into the MBR, since the former condition could provide a prolonged cycle of filtration with a relatively lesser increase in transmembrane pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of ceramic membranes with pore sizes of 0.05 and 0.10 mm in purifying limed and partially clarified sugar cane juice was investigated under different operating conditions. From various operating conditions and strategies, switching off the permeate for 5 seconds for every 5 minutes (S5sT5 m) by an automated control valve provided higher flux. From the three pH experiments conducted on the 0.05 mm membrane, the best performance was observed at a pH of 7.5. Amongst the four fouling models tested, the cake filtration model fitted the performance of both membranes with higher accuracy at a transmembrane pressure of 0.5 bar. Filtering the cane juice through the membrane reduced the turbidity by 99.7%, color by 15%, and the starch concentration by 80% as well as increased the purity by 1.4%. The effective cleaning chemical composition from experimental results showed that 1% NaOH and 3000 ppm NaOCl solution performed the best but only for the experiments that were treating limed and partially clarified juice at pH 7.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates the critical flux obtained by different techniques including tests with different flux step lengths (20 and 40 min and 7 days) and modes of operation (continuous and intermittent) under low and high MLSS concentrations. The paper also analyses a couple of long-term tests (flow rate of 40 and 20 L/day) to obtain the time required to reach the critical flux experimentally and compares those values with the results obtained numerically from a mathematical model. It was found that intermittent mode with membrane relaxation was useful in controlling the fouling of membrane and in restoring the membrane from fouling at lower MLSS.